• Title/Summary/Keyword: Uranium bed

Search Result 21, Processing Time 0.028 seconds

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

Uranium Concentrations in Groundwater of the Goesan Area, Korea (괴산지역 지하수의 우라늄 함량)

  • Cho, Byong-Wook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.353-361
    • /
    • 2017
  • Uranium concentration in groundwater of the Goesan area was anticipated high because the area contains Ogcheon metamorphic rock zone which partly includes coal bed bearing high uranium content and nearly half of the area is covered by granitic rocks. Groundwater samples collected from 250 wells in five 5 lithology (Ogcheon meta-sandy rock zone (Og1), Ogcheon lower phyllite zone (Og2), Ogcheon pebble bearing phyllite zone (Og3), Jurassic granite (Jgr), Cretaceous granite (Kgr)), of the area were analyzed and equivalent uranium concentrations (e(U)) from 200 rocks near sampled wells were measured using portable gamma spectrometry. Higher median value of e(U) (8.2 mg/kg) was found on Kgr outcrops. The median e(U) value of Og2 was not as high as that of Kgr and similar to those of Jgr, Og1, and Og3 (3.05~3.90 mg/kg). The uranium level in groundwater of the area ranged from 0.01 to $293.0{\mu}g/L$ with a median value of $0.87{\mu}g/L$ which is similar to the national median uranium level of $0.74{\mu}g/L$. The uranium concentration was high in the samples from the Kgr (median $4.74{\mu}g/L$) and low samples from the Og1, Og2, and Og3 (median $0.35{\sim}0.74{\mu}g/L$). The percentage of total samples having uranium level above $30{\mu}g/L$ was 2.8%, on the other hand, that of Kgr is 20.7%, reflecting additional survey on the Kgr area is needed.

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed (수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링)

  • Park, Jongcheol;Lee, Jungmin;Koo, Daeseo;Yun, Sei-Hun;Paek, Seungwoo;Chung, Hongsuk
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide

  • Alzamly, Mohamed A.;Aziz, Moustafa;Badawi, Alya A.;Gabal, Hanaa Abou;Gadallah, Abdel Rraouf A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.674-680
    • /
    • 2020
  • We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found.

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

Evaluation of Terrestrial Gamma Radiation and Dose Rate of the Ogcheon Group Area (옥천층군 일대의 지표방사능과 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.577-588
    • /
    • 2020
  • We evaluated the distributions of primordial radionuclides and effective dose rate of the Ogcheon Group, which includes rocks with high uranium content. Terrestrial gamma radiation was measured at 421 points using a portable gamma ray spectrometer. Dividing the study area into five geological units (og1, og2, og3, og4, and igneous rocks) revealed no significant difference in the concentration of surface radioactivity among the types. The concentrations of 40K, eU, and eTh for all samples ranged from 0.7% to 10.3% (average 5.2%), 0.6 to 287.0 ppm (average 8.5 ppm), and 4.0 to 102.4 ppm (average 31.3 ppm), respectively. The absorbed dose rate in the study area (calculated from the activity concentrations of 40K, eU, and eTh) was in the range of 28.84 to 1,714.5 nGy/h (average 195.4 nGy/h). Among the five geological units, the lowest average was 166.3 nGy/h (for og1) and the highest average was 233.3 nGy/h (for og2; median 198.1 nGy/h). The outdoor effective dose rate for the area obtained from the absorbed dose rate was in the range of 0.04 to 2.10 mSv/y (average 0.24 mSv/y). Except for the four sites located in the uranium-bearing coal bed of og2, none of the studied sites exceeded 1 mSv/y.

Allanite Mineralization in the Mt. Eorae Area (어래산지역(御來山地域)의 갈렴석광상(褐簾石鑛床))

  • Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.151-166
    • /
    • 1989
  • A study of rare-earth mineralization in Kyemyungsan metasedimentary formation of Precambrian Ogcheon Group was carried out in the Mt. Eore Area near Choongju City based on the thorium (Th) and uranium (U) count data of geophysical airborne survey. This rare-earth mineralization was found in the magnetite-bearing banded quartizite which contains diagnostically some amounts of the metamict allanite. The brown colored allanites are distributed as aggregates of fine grains and sometimes banded structures with magnetite (inter growth) along the banding. The ore bed is displaced by the small faults and granite intrusions, and separated 5 ore blocks. The dimensions of the outcrop are 50-80 m in width, 1,500 m in length with the strike of $N70-80^{\circ}E$ and dip of $50-80^{\circ}NW$. In the field, the values of total gamma ray count of GR-101A scintillometer were able to measure more than 400 cps and maximum 1,500 cps, which data are coincided with the values of GR-310 gamma ray spectrometer and the gamma ray count of well logging data. The chemical compositions of the allanites from EPMA data are ranged from$\sum^{TR_2O_3}$ 18.57% to 26.00%, and the cerium oxides ($Ce_2O_3$) of allanite are positive relation with $La_2O_3$, MgO, FeO, MnO and negative relation with $SiO_2$, $Al_2O_3$, $Nd_2O_3$. The result of Neutron Activation Analysis (N.A.A.), Multi-Channel Analysis (M.C.A.) and wet chemistry of 25 outcrop samples for the elements of REE, Zr, U, Th shows strong anomalies. The good correlation elements with the thorium (Th) are the elements of La, Ce, LREE, $TR_2O_3$, Pr, Sm, Yb, Lu by the increasing order.

  • PDF