• Title/Summary/Keyword: Uranium Metal

Search Result 130, Processing Time 0.024 seconds

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt (LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구)

  • 오승철;허진목;서중석;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li$_2$O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li$_2$O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

The Solvent Extraction of Uranium(VI) and Other Metal Ions with Pyrazolone Chelating Agents -The Studios on the Rad-Waste Treatment(1)- (킬레이팅 화합물에 의한 우라늄의 용매추출 -방사성 폐기물 처리 처분 연구(I)-)

  • Hun Hwee Park;Nak June Sung
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 1983
  • The chelating agent with $\beta$-diketo funtional group, 1-phenyl-3-methyl-4-acyl-pyrazolone-5-one, has been used in separating and extracting radionuclides in a waste solution. The derivatives of this pyrazolone compound, prepared by different acyl groups, were synthesized and examined to figure out the extracting ability for Uranium (VI) and Zirconium (IV). The product prepared with succinic anhydride, called succinyl pyrazolone, showed excellent extraction for uranium (VI) in a chloroform solvent system. This result indicates that acyl pyrazolones having carboxylic acid group as a functional group forming $\beta$-diketo functionality are very selective for uranium (VI) and generally other metal ions with high valency.

  • PDF

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Oxidation Behavior of Simudated Metallic U-Nb Alloys in Air (모의 금속전환체 U-Nb 합금의 공기중 산화거동)

  • Lee Eun-Pyo;Ju June-Sik;You Gil-Sung;Cho il-Je;Kook Dong-Hak;Kim Ho-Dong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.239-244
    • /
    • 2004
  • In order to enhance an oxidation resistance of the pure uranium metal under air condition, a small quantity of niobium(Nb) which is known to mitigate metal oxidation is added into uranium metal as an alloying element. A simulated metallic uranium alloy, U-Nb has been fabricated and then oxidized in the range of 200 to $300^{\circ}C$ under the environment of the pure oxygen gas. The oxidized quantity in terms of the weight gain(wt%) has been measured with the help of a thermogravimetric analyzer. The results show that the oxidation resistance of the U-Nb alloy is considerably enhanced in comparison with that of the pure uranium metal. It is revealed that the oxidation resistance of the former with the niobium content of 1, 2, 3, and 4 wt% is : 1) 1.61, 7.78, 11.76 and 20.14 times at the temperature of $200^{\circ}C$ ; 2) 1.45, 5.98, 10.08 and 11.15 times at $250^{\circ}C$ ; and 3) 1.33, 4.82, 8.87 and 6.84 times at $300^{\circ}C$ higher than that of the latter, respectively. Besides, it is shown that the activation energy attributable to the oxidation is 17.13~21.92 kcal/mol.

  • PDF