• 제목/요약/키워드: Upward flow

검색결과 316건 처리시간 0.024초

수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구 (An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct)

  • 박일석;박상민;하지수
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

이산화탄소의 마이크로 핀관 내 상향유동 증발열전달 특성에 관한 연구 (An experimental study on heat transfer characteristics in a vertical micro-fin tube during evaporation process of carbon dioxide flowing upward)

  • 김용진;조진민;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.247-251
    • /
    • 2007
  • Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical micro-fin tube have been investigated by experiment. Before a test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. The micro-fin tube with outer diameter of 5 mm and length of 1.44 m was selected as the test section. The test was conducted at mass fluxes of 318 to $530\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat fluxes of 15 to $30\;kW/m^2$. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are increased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase, and there was not much of influence of mass flux on the heat transfer coefficients.

  • PDF

기-액 기둥에서 기포유동에 관한 연구 (A Study on the Bubble Flow in the Gas-Liquid Plume)

  • 서동표;홍명석;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

기포운동에 따른 2상유동 특성에 관한 연구 (A Study on the Characteristics of Two-Phase Flow by Driven Bubbles)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.268-273
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas is concentrated at the near nozzle, the flow parameters are high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (P.I..V) and a thermo-vision camera were used in the present study. The experimental results show that heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

The Characteristics of Two-Phase Flow Distribution in a Bottom Dividing Header

  • Im, Yang-Bin;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1195-1202
    • /
    • 2004
  • In this paper an experimental study was investigated for two-phase flow distribution in compact heat exchanger header. A test section was consisted of the horizontal bottom dividing header($\phi$: 5 mm, L: 80 mm) and 10 upward circular mini channels ($\phi$: 1.5 mm, L: 850 mm) using an acrylic tube. Three different types of tube intrusion depth were tested for the mass flux and inlet mass quality ranges of 50 - 200 kg/$m^2$s and 0.1 - 0.3, respectively. Air and water were used as the test fluids. The distribution of vapor and liquid is obtained by measurement of the total mass flow rate and the calculation of the quality. Two-phase flow pattern was observed, and pressure drop of each channel was measured. By adjusting the intrusion depth of each channel an uniform liquid flow distribution through the each channel was able to solve the mal-distribution problem.

암모니아/물 흡수식 냉동기의 대향류 판형 재생기의 수치모델

  • 지제환;정은수;정시영
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1034-1041
    • /
    • 2001
  • A numerical model which simulates the flow boiling process of the ammonia/water solution within a plate type generator for ammonia/water absorption refrigerators was developed. The ammonia/water solution flows downward under gravity and the ammonia/water vapor generated by flow boiling flows upward. The heating medium flows counter to the ammonia/water solution. The flow pattern within the generator was assumed to be a bubbly flow, and the liquid and vapor phases were assumed to be saturated. It was shown that the boiling of ammonia occurred mainly in the upper part of the generator. The effects of the heating medium inlet temperature, the mass flow rate of the heating medium and the mass flow rate of ammonia/water solution into the generator on the generation of ammonia/water vapor were investigated.

  • PDF

코일형 흡수기에서 증기 유동 방향이 유하액막 열전달에 미치는 영향 (제1부: 물을 이용한 실험) (Effect of Vapor Flow Direction on Falling Film Heat Transfer in a Coiled Tube Absorber (Part 1: Experiments with Pure Water))

  • 박경진;권경민;정시영;김병주
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.720-729
    • /
    • 2001
  • The effect of vapor flow direction on falling film heat transfer was experimentally investigated by using water. Parallel flow (both water and vapor downwards) showed higher heat exchange performance than counterflow(downward water and upward vapor). The difference became significant as the vapor flow rate was increased. It is supposed that the uprising vapor disturbs the solution film flow and heat transfer is reduced by uneven distribution or detachment of water film.

  • PDF

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

수직상향 이상류에서 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (Effects of Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Upward Two-Phase Flow)

  • 손병진;김인석;김문철
    • 대한설비공학회지:설비저널
    • /
    • 제16권4호
    • /
    • pp.383-391
    • /
    • 1987
  • An experimental investigation has been conducted to determine the flow pattern for two-component , two-phase mixtures which flow vertically upwards in concentric annuli based on the measurement for the local void fraction and the distribution of the local void fraction in various radial locations in the annular gap. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel rod, The rod diameter is either :2mm,16mm or 20mm. It is demonstrated that the probability density function of the fluctuations in void fraction may be used as an flow pattern indicator and the local void fraction distribution depends on the flow pattern and radial location in the annular passage.

  • PDF

단방향 플러싱에 의한 입자성 물질의 제거에 관한 연구 (A study on the removal of particulate matters using unidirectional flushing)

  • 김두일;천수빈;현인환
    • 상하수도학회지
    • /
    • 제29권3호
    • /
    • pp.371-380
    • /
    • 2015
  • Particulate matters in a water distribution system are main causes of turbidity and discoloration of tap water. They could be removed by conventional or uni-directional flushing in a water distribution system. The behaviors and required flow velocity of particles are not well known for their flushing. A model water main and hydrant were made from transparent acrylic pipe of 30mm and 16mm in diameter, respectively. We analyzed the effect of flushing velocity, particle density, and particle diameter. We found that the existence of break-though velocities at which particles begin to be removed, and which are affected by their physical properties. The removal efficiencies seemed to be influenced by resuspension capabilities related to their upward movement from the bottom. Heavy particles like scale were hard to remove through upflow hydrant because the falling velocity, calculated using Stokes' law, was higher. Particle removal efficiencies of upward hydrant and downward drain showed minor differences. Additionally, the length between hydrant and control valve affected flushing efficiency because the particulate matters were trapped in this space by inertia and recirculating flow.