• Title/Summary/Keyword: Upsetting Process

Search Result 102, Processing Time 0.025 seconds

A Study on Buckling and plastic Instable Flow with Kinematic Hardening (이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구)

  • 황두순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

Grain Size Effect on Formability of Mg alloys (Mg 합금의 성형성에 미치는 결정립 크기의 영향)

  • Kim, T.O.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.448-451
    • /
    • 2008
  • Magnesium alloys still have a lot of technical challenges to be solved for more applications. There have been many research activities to enhance formability of magnesium alloys. One is to design new alloy composition having better formability. Also, low formability of wrought alloys can be improved by optimizing the processing variables. In the present study, effect of process variables such as forging temperature and forging speed were investigated to forgeability of three different magnesium alloys such as AZ31, AZ61 and ZK60. To understand the effect of process variables more specifically, both numerical and experimental works have been carried out on the model which contains both upsetting and extrusion geometries. Forgeability of magnesium alloys was found to depend more on the forging speed rather than temperature. Forged sample showed a significant activity of twinning, which was found to be closely related with flow uniformity.

  • PDF

Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis - (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.

Analysis of Macroscopic Forming Process on the Basis of Microscopic Crystal Plasticity (미시적 결정소성학에 의거한 거시적 성형공정 해석)

  • 여은구;이용신
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.167-175
    • /
    • 1998
  • A mathematical formulation is presented to model anisotropy from the deformation textures developed in a forming process. In this work, a micro-mechanical-based polycrystalline analysis is implemented into a consistent finite element method for the anisotropic, viscoplastic deformation of polycrystalline metals. As suggested by Taylor, the deformation of each grain in an aggregate is assumed to be same as the macroscopic deformation of an aggregate or a macro-continuum point. Algorithms are developed to represent the plastic anisotropy, such as the anisotropic yield surface and R-value, from the predicted deformation texture. As applications, the evolution of texture in rolling, upsetting and drawing/extrusion processes are simulated and the corresponding changes of mechanical properties such as yield surface and R-value are predicted.

  • PDF

A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw (대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구)

  • 김영득;김동영;김동권;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

Characteristics of Hot Forming of Magnesium Alloys for Light-weight Valves (경량 밸브 제조용 마그네슘 합금의 고온 성형 특성)

  • Park, Joon-Hong;Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2012
  • In recent years, Magnesium(Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

A Study of Multiple Scale FEM Modeling for Prediction of Inner Void Closing Behavior in Open Die Forging Process (자유단조 공정 시 내부 기공 거동 예측을 위한 멀티스케일 유한요소해석 연구)

  • Kwak, E.J.;Kang, G.P.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.319-323
    • /
    • 2012
  • In order to predict the internal void closing behavior in open die forging process, multiple scale modeling has been developed and applied. The huge size difference between ingot and inner void makes it almost impossible to simultaneously model the actual loading conditions and the void shape. Multiple scale modeling is designed to integrate macro- and micro- models effectively and efficiently. The void closing behavior was simulated at 39 different locations in a large ingot during upsetting and cogging. The correlation between the closing behavior and variables such as effective plastic strain and maximum compressive strain was studied in order to find an efficient measure for predicting the soundness of the forging.

Weld Defect Formation Phenomena during High Frequency Electric Resistance Welding

  • Choi, Jae-Ho;Chang, Young-Seup;Kim, Yong-Seog
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • In this study, welding phenomena involved in formation of penetrators during high frequency electric resistance welding were investigated. High speed cinematography of the process revealer that a molten bridge between neighboring skelp edges forms at apex point and travels along narrow gap toward to welding point at a speed ranging from 100 to 400 m/min. The bridge while moving along the narrow gap swept away oxide containing molten metal from the gap, providing oxide-free surface for a forge-welding at upsetting stand frequency of the budge formation, travel distance and speed of the bridge were affected by the heat input rate into strip. The travel distance and its standard deviation were found to have a strong relationship with the weld defect density. Based on the observation, a new mechanism of the penetrator formation during HF ERW process is proposed.

  • PDF

A Study on the Determination of Initial Biller for Axisymmetric Cold Forging Products Using Neural Networks (신경망을 이용한 축대칭 냉간 단조품의 초기 소재 결정에 관한 연구)

  • 김영호;배원병;박종옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.217-222
    • /
    • 1994
  • This paper describes the determination of optimal initial billet size for axisymmetric cold forging products using neural networks. The determination of optimal initial billet size is very important in forging design and forming sequence design, because the result of such designs and forming load can be different by variable initial billet sizes. The forming difficulty has been defined as the degree of difficulty in forming by 3 process ' forward extrusion, backward extrusion and upsetting. By neural networks a forming difficulty can be determined with the ratio of shape and forming process. From the graph of maximum, minimum, and average forming difficulties by variable billet sizes, the optimal billet size can be determined. The initial billets of a solid part and a hollow part whichwas determined by this study are compared with the sequence drawing generated by the one of forming sequence design system.

  • PDF