• 제목/요약/키워드: Upper-Air

검색결과 897건 처리시간 0.025초

클린 터널형 클린룸 설계를 위한 유동특성의 실험적 연구 (An Experimental Study on the Airflow Characteristics for Clean Tunnel Type Clean Room Design)

  • 배귀남;임학규;오명도
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.32-45
    • /
    • 1989
  • The airflow characteristics of clean tunnel type clean room were experimentally investigated with the change of operating speed and exit type. Distributions of air velocity and pressure were measured in clean room which is located lower than HEPA filters, and the pressure distribution was also measured in upper plenum which is located above the HEPA filters, to identify the performance of clean room. Through the analysis it was turned out that air velocity characteristics in clean room were significantly affected by the upper plenum flow conditions such as pressure distribuion. This results will be useful in the actual clean room design to enhance the performance.

  • PDF

소아 장중첩증에서 증상 지속 시간에 따른 단순 복부 사진의 변화 (The Changing pattern of the Plain Abdominal Radiogram by Progression of the Intussusception in Children)

  • 전형석;최영철;최승호
    • Advances in pediatric surgery
    • /
    • 제15권2호
    • /
    • pp.132-140
    • /
    • 2009
  • The purpose of this study was to determine the success rate of air reduction as the primary treatment of intussusception and whether the success of air reduction could be predicted by plain x-ray. The authors reviewed the medical records of 54 consecutive patients diagnosed with intussusception from Jan 2005 to Dec 2007 at the Department of Surgery, Masan Samsung Hospital. The natures of symptoms and findings of plain abdominal radiography performed in the emergency department (ED) were reviewed. Air reduction failed more frequently (26.3 %) in patients who visited ED more than 24 hours after symptom onset (p=0.009). The mean duration of symptom for operated patients was longer than air reduction group (p=0.01). Also, 3/4 of patients having localized distension of small bowel in the left upper quadrant abdomen had unsuccessful air reduction (p=0.002). In conclusion, the time interval from symptom onset to arrival at ED and localized distension of small bowel in the left upper quadrant abdomen significantly increased the failure rate of air reduction.

  • PDF

에어댐의 높이가 차체 표면의 압력변화에 미치는 영향 (Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface)

  • 박종수;김성준
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

Influence of Stratospheric Intrusion on Upper Tropospheric Ozone over the Tropical North Atlantic

  • Kim, So-Myoung;Na, Sun-Mi;Kim, Jae-Hwan
    • 한국지구과학회지
    • /
    • 제29권5호
    • /
    • pp.428-436
    • /
    • 2008
  • This study observed the upper tropospheric ozone enhancement in the northern Atlantic for the Aerosols99 campaign in January-February 1999. To find the origin of this air, we have analyzed the horizontal and vertical fields of Isentropic Potential Vorticity (IPV) and Relative Humidity (RH). The arch-shaped IPV is greater than 1.5 pvus indicating stratospheric air stretches equatorward. These arch-shaped regions are connected with regions of RH less than 20%. The vertical fields of IPV and RH show the folding layer penetrating into the upper troposphere. These features support the idea that the upper tropospheric ozone enhancement originated from the stratosphere. Additionally, we have investigated the climatological frequency of stratospheric intrusion over the tropical north Atlantic using IPV and RH. The total frequency between the equator and $30^{\circ}N$ over the tropical north Atlantic exhibits a maximum in northern winter. It suggests that the stratospheric intrusion plays an important role in enhancing ozone in the upper troposphere over the tropical north Atlantic in winter and early spring. Although the tropospheric ozone residual method assumed zonally invariant stratospheric ozone, stratospheric zonal ozone variance could be caused by stratospheric intrusions. This implies that stratospheric intrusion influences ozone variance over the Atlantic in boreal winter and spring, and the intrusion is a possible source for the tropical north Atlantic paradox.

경사냉각면에 따른 함수정방형내의 동결현상에 관한 실험적 연구 (An experimental study on freezing phenomena of water saturated square cavity with inclined cold surface)

  • 이춘희;김종준;김병철
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.435-445
    • /
    • 1997
  • It was studied the phenomena of transient freezing of an inclined water-saturated enclosure. One side of the test section was cooled and the other sides were insulated. The effects of the initial temperature, the inclination angle on the temperature field and the shape of the ice-water interface were observed. In the beginning of freezing, with increasing the inclination angle the freezing rate was increased and in the stable density layer centered $4^{\circ}C$, the freezing was fast as the convective fluid flow became small. When the initial temperature was above the $4^{\circ}C$, the frozen thickness in the upper part of inclined surface was thinner than that in the lower part, but with time the frozen thickness of upper part was thicker than that of lower part, below the $4^{\circ}C$, the frozen thickness in the upper part was thicker than that of lower part from the begining, and above the $8^{\circ}C$ in the beginning upper part was thinner with concave, but with time thicker the upper part, vanishing concave.

  • PDF

Mechanism Study of Tropical Cyclone Impact on East Asian Subtropical Upper-Level Jet: a Numerical Case Investigation

  • Chen, Xian;Zhong, Zhong;Lu, Wei
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.575-585
    • /
    • 2018
  • In the case study of this paper, sensitivity experiments are carried out using the mesoscale non-hydrostatic Weather Research and Forecasting (WRF) model to investigate the impact of tropical cyclone (TC) Soudelor (2003) on the East Asian subtropical upper-level jet (EASJ) before TC Soudelor transformed into an extratropical cyclone. The physical mechanism for changes in the EASJ intensity and position caused by TC Soudelor is explored. Results indicate that TC Soudelor would warm the air in the middle and upper troposphere over the Japan Sea and the adjacent areas through stimulating northward propagating teleconnection pattern as well as releasing large amounts of latent heat, which led to increase (decrease) the meridional air temperature gradient to the south (north) below the EASJ axis. As a result, the geopotential height abnormally increased in the upper troposphere, resulting in an anomalous anticyclonic circulation belt along the EASJ axis. Correspondingly, the westerly winds to the north (south) of the EASJ axis intensified (weakened) and the EASJ axis shifted northward by one degree. The case study also suggests that before the extratropical cyclone transition of TC Soudelor, the TC activities had exerted significant impacts on the EASJ through thermodynamic processes.

극한 환경 시험을 위한 극저온 챔버의 CFD 해석 및 에너지 효율 평가에 관한 연구 (A Study on the CFD Analysis and Estimation of the Energy Efficiency of Cryogenic Chamber for Extreme Climate Test)

  • 강율호;김민규;박원규
    • 설비공학논문집
    • /
    • 제28권2호
    • /
    • pp.81-88
    • /
    • 2016
  • There are many types of national and international standards for low temperature tests depending on the products. This study conducted CFD analysis and estimation of the energy efficiency of the chamber both with and without a test object by considering variations of COP and specific volume according to temperature. The supply air was located in the upper area to compare the cooling performance for each location using various outlets in mixed ventilated conditions. For cases without the test object, the air temperature of the upper supply and center extract on the opposite side type chamber cooled faster than other areas by 4.3~29.8%. However, for cases with the test object, the object temperature of the upper supply and lower extract type chamber cooled faster than the other areas by 7.2~31.5%. The cooling efficiency of the air inside the chamber and the test object did not show the same pattern, which indicates the need to consider the cooling performance by not only the air but also the test object in the cryogenic chamber design for testing.

Numerical investigation of a novel device for bubble generation to reduce ship drag

  • Zhang, Jun;Yang, Shuo;Liu, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.629-643
    • /
    • 2018
  • For a sailing ship, the frictional resistance exerted on the hull of ship is due to viscous effect of the fluid flow, which is proportional to the wetted area of the hull and moving speed of ship. This resistance can be reduced through air bubble lubrication to the hull. The traditional way of introducing air to the wetted hull consumes extra energy to retain stability of air layer or bubbles. It leads to lower reduction rate of the net frictional resistance. In the present paper, a novel air bubble lubrication technique proposed by Kumagai et al. (2014), the Winged Air Induction Pipe (WAIP) device with opening hole on the upper surface of the hydrofoil is numerically investigated. This device is able to naturally introduce air to be sandwiched between the wetted hull and water. Propulsion system efficiency can be therefore increased by employing the WAIP device to reduce frictional drag. In order to maximize the device performance and explore the underlying physics, parametric study is carried out numerically. Effects of submerged depth of the hydrofoil and properties of the opening holes on the upper surface of the hydrofoil are investigated. The results show that more holes are favourable to reduce frictional drag. 62.85% can be achieved by applying 4 number of holes.

건물 저층과 고층에서 환기와 공기정화 식물을 통한 라돈 농도의 비교 (Comparing the Effects of Ventilation and Air Purification Plants on Radon Concentration in the Lower and Upper Floors of a Building)

  • 공유진;남소영;신민서;장혜림;전민철;유세종;김성호
    • 한국방사선학회논문지
    • /
    • 제14권7호
    • /
    • pp.881-889
    • /
    • 2020
  • 본 연구는 건물의 저층과 고층에서 환기와 공기정화 식물을 통한 라돈의 농도 변화를 정량적으로 측정하고자 하였다. 건물의 저층과 고층에서 라돈 농도 측정을 위해 시간을 설정하고 라돈 측정기를 이용하여 실내를 폐쇄 했을 때와 환기, 공기정화식물을 배치했을 때의 라돈 농도를 각각 측정하여 비교하였다. 폐쇄, 환기, 공기정화식물 배치에 따라 라돈 농도 변화에 유의한 차이를 보이는지 검증하고자 일원배치 분산분석(One-way ANOVA)를 시행하였다. 실험 결과 건물의 저층과 고층에서 환기와 공기정화식물 배치를 통한 라돈 농도의 감소는 통계적으로 유의한 차이를 보였으며, 환기와 공기정화식물을 배치 했을 때에는 통계적으로 유의한 차이점을 나타내지 않았다. 따라서 건물내 환기 뿐만 아니라 공기정화식물을 적절히 활용하면 라돈 농도를 효과적으로 감소시킬 수 있을 것으로 사료된다.

덕트의 입구조건이 팬의 특성에 미치는 영향 (The Effect of Duct Inlet Condition on Flow Characteristics of Fan)

  • 김종수;조강래
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 1995
  • The effects of duct inlet conditions on fan characteristics and upper wind velocity fields were investigated for two kinds of impellers. As the duct inlet condition, the relative positions between duct inlet and fan impeller and the size of baffle plate mounted on a duct inlet were selected. The 3-dimensional velocity components in flow fields were measured by a 5-holes pitot tube. From the results of measurements, it was found that the size of baffle plate scarecely effect on upper wind flow fields and characteristics of fan. It was also confirmed that the upper wind velocity distributions can be estimated by the potential flow field with large baffle plate at duct inlet.

  • PDF