• Title/Summary/Keyword: Upper structures

Search Result 912, Processing Time 0.025 seconds

Seismic Retrofit of Spatial Structures Using Buckling Restrained Brace (비좌굴 가새를 이용한 대공간 구조물 내진 보강 설계)

  • Moon, Hee-Suk;Kim, Gee-Chul;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.105-111
    • /
    • 2018
  • In this study, the seismic performance and behavior characteristics of the upper truss structure of the large stadium are analyzed by nonlinear dynamic analysis. In the nonlinear dynamic analysis, the earthquake records were generated by site response analysis to simulate the nonlinear behavior of the relevant soil condition where the structure is located. Nonlinear dynamic analysis was performed using Perform-3D and the nonlinear properties of the substructure and the superstructure were determined in accordance with KISTEC guideline. According to the analysis results, excessive deformation occurred in the upper truss element, and plastic hinges exceeded the target performance in some members. Buckling-restrained brace is used for seismic retrofit of stadium structures and the analysis results shows the interstory drift satisfies the target performance level with dissipating the seismic energy efficiently.

Classification of Behavioral Lexicon and Definition of Upper, Lower Body Structures in Animation Character

  • Hongsik Pak;Suhyeon Choi;Taegu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.103-117
    • /
    • 2023
  • This study focuses on the behavioural lexical classification for extracting animation character actions and the analysis of the character's upper and lower body movements. The behaviour and state of characters in the animation industry are crucial, and digital technology is enhancing the industry's value. However, research on animation motion application technology and behavioural lexical classification is still lacking. Therefore, this study aims to classify the predicates enabling animation motion, differentiate the upper and lower body movements of characters, and apply the behavioural lexicon's motion data. The necessity of this research lies in the potential contributions of advanced character motion technology to various industrial fields, and the use of the behavioural lexicon to elucidate and repurpose character motion. The research method applies a grammatical, behavioural, and semantic predicate classification and behavioural motion analysis based on the character's upper and lower body movements.

The Response Characteristics of Push-over and Nonlinear Time History Analysis with Variations in the Upper Stories of the Mixed Building Structure (복합구조물의 상부층수 변화에 따른 탄소성 정적 및 동적 응답특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.73-83
    • /
    • 2001
  • The mass and stiffness of upper wall-lower frame system(mixed building structures) change sharply at transfer floor due to different structural system in upper and lower part. These mixed building structures generally show the stiffness, weight or geometric vertical irregularities. The purpose of this study is to investigate the response characteristics of these structures by push-over analysis and nonlinear time history analysis. For four types of analysed models, only the variation of upper wall stories was considered. The conclusions of this study are following; (1) In the push-over analysis, yielding hinges in beams and columns of lower frame occurred at the base shear of similar magnitude in all models. But as the number of stories of upper wall increases, yielding hinges at ends of coupling beams were observed in the small magnitude of base shear. (2) In the nonlinear time history analysis, yielding of lower frame occurred at beams with as small ground acceleration as 55gal, and in upper walls yielding was concentrated on coupling beams and shear walls near the transfer floor. (3) As the number of stories of upper walls decreases, the story stiffness of the lower frames decreased relatively and the occurrence of soft stories in the lower frame was observed.

  • PDF

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.

A study on characteristics of composition method of inner foundation in stone stupa (석탑 기단부 적심구성방법에 대한 특성 고찰 - $7{\sim}8$세기 석탑 중 해체 수리한 석탑을 중심으로 -)

  • Chung, Hae-Doo;Jang, Suk-Ha
    • Journal of architectural history
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2007
  • Through analysing on construction cases of stupa built in A.D. 7,8th, I have researched about these : constructive methods of inner soil of stupa, spatial compositions, characteristics of structures, arrangements of inner soil and etc. And cases analysed are six ; Mireuksajiseoktap(stone pagoda of Mireuksa Temple site), Gameunsajisamcheumgseoktap(three storied stone pagoda of Gameunsa Temple site), Goseonsajisamcheungseoktap(three storied stone pagoda of Goseonsa Temple site), Wolseong nawolliocheungseoktap(five storied stone pagoda in Nawonri, Wolseong), Guksagokseoktap(three storied stone pagoda in Guksa valley), Giamgokseoktap(three storied stone pagoda in Giam valley). Additionally we researched about inner soil of Sacheonwangsaji tapji(basement of stone stupa site in Sacheonwang Temple site) to speculate on composition of Synthetically, the foundation could be divided as core space and outer space. ; the former as structural function and the latter as ornamental function. And the core area could be divided again as center column space and buffer space. The relationship between core spaces and its formation are as belows; First, according to the area of foundation and scale of stone pagoda, formations of core are differed. As the scale of stone pagoda goes bigger, and the area of foundation goes larger, the structure of stone pagoda comprised by center column type and layered-core which endure upper load independently. On the contrary, as the scale of stone pagoda goes smaller, and the area of foundation goes lesser, the structure of stone pagoda tend to use only center column to endure upper part. Second, spatial composition of core area is comprised as two spaces, one which endure upper load and buffer space which absorb side pressure and upper pressure. The buffer space tend to be used in case of those structures which could not endure side pressure or have lots of joint. In some cases, it was located below the cover stone of foundation and gained upper load. And in case that have not gained pressure from side stone, the buffer space are comprised by smalle stone or roof tile to get structural supplement.

  • PDF

A Study on the Somatotype Classification of Muscular Men - Focused on the Upper Body- (근육형 남성의 체형분류에 관한 연구 - 상반신을 중심으로-)

  • Jeong, Hye-Jin;Kim, So-Ra
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.25-37
    • /
    • 2008
  • The purpose of this research is to understand the physiological characteristics of muscular men between the ages of 20 and 34 years who are distinct from the general population due to their muscular development, and to categorize them according to upper body somatotypes. This research was conducted in order to provide basic data necessary for developing clothing products for muscular men. The research method and results were as follows: the "Sheldon's" and "Heath-Carter" somatotype classification methods were carried out at sports centers, the Athletic College, and military bases in Seoul and Gyeonggi province. Excluding the 32 subjects that did not have a balanced mesomorph, ectomorphic mesomorph or mesomorph-ectomorph, research on the remaining 168 subjects was used in the data analysis. 2. We used the following factor analysis: factor 1 for torso size; factor 2 for upper-arm, armpit, and chest breath size; and 3. The upper body was categorized into four (4) types, and their individual characteristics were as follows: Type 1 had the most developed arms, shoulders, chest muscles, and the shortest height. These subjects had an average of 191 somatotype points and could be classified as a balanced mesomorph. The heights and the lengths of Type 2 were short. They had slim physical structures, averaged 182 somatype points, and could be classified as an ectomorphic mesomorph. somatotype points and were classified as a balanced mesomorph. The heights and the lengths of Type 4 were long. They had slim physical structures, averaged 164 somatotype points, and were classified as a balanced mesomorph-ectomorph. 4. After carrying out a discriminant analysis to validate the categories of muscular men's upper bodies, we concluded that our model had an accuracy rating of 98.1%.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates (단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures (래티스 돔 구조물의 탄소성 거동 특성에 관한 연구)

  • Park, Chul-Ho;Han, Sang-Eul;Yang, Jea-Guen
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

ANALYSIS OF THE UPPER BOUND ON THE COMPLEXITY OF LLL ALGORITHM

  • PARK, YUNJU;PARK, JAEHYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.107-121
    • /
    • 2016
  • We analyze the complexity of the LLL algorithm, invented by Lenstra, Lenstra, and $Lov{\acute{a}}sz$ as a a well-known lattice reduction (LR) algorithm which is previously known as having the complexity of $O(N^4{\log}B)$ multiplications (or, $O(N^5({\log}B)^2)$ bit operations) for a lattice basis matrix $H({\in}{\mathbb{R}}^{M{\times}N})$ where B is the maximum value among the squared norm of columns of H. This implies that the complexity of the lattice reduction algorithm depends only on the matrix size and the lattice basis norm. However, the matrix structures (i.e., the correlation among the columns) of a given lattice matrix, which is usually measured by its condition number or determinant, can affect the computational complexity of the LR algorithm. In this paper, to see how the matrix structures can affect the LLL algorithm's complexity, we derive a more tight upper bound on the complexity of LLL algorithm in terms of the condition number and determinant of a given lattice matrix. We also analyze the complexities of the LLL updating/downdating schemes using the proposed upper bound.

Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling (충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성)

  • Park, Je Young;Lee, Myung Jea
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but due to the larger size than the through diaphragm, it has poorer constructability and cooperation with building equipment. The building structure has a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragmwas placed at the lower connection to avoid obstruction of the building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.