• Title/Summary/Keyword: Upper critical field

Search Result 65, Processing Time 0.025 seconds

A Case Study on the High-quality DCM applied to the Foundation of Breakwater (방파제 기초에 적용된 고품질 DCM공법의 설계 및 시공 사례)

  • Kang, Yeoun-Ike;Shim, Min-Bo;Shim, Sung-Hyun;Kim, Ha-Young;Shim, Jae-Bum;Chun, Youn-Chul;Yoon, Jung-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.815-826
    • /
    • 2009
  • The paper presents a case study addressing the design and construction aspects for DCM(Deep Cement Mixing) method employed as the foundation of a caisson type breakwater with heavy weight(10,700 ton/EA) and a high design wave height($H_{1/3}$=8.7m). The DCM was designed for the project(Ulsan New Port North Breakwater Phase 1) by optimizing the pattern of DCM columns with a combination of short and long columns (i.e., block type(upper 3m)+wall type(lower)) and considering overlapped section between columns as a critical section against shear force where the coefficient of effective width of treated column($\alpha$) was estimated with caution. It was shown that the value can be 0.9 under the condition with the overlapped width of 30cm. In addition to that, a field trial test was performed after improving conventional DCM equipment (e.g., mixing blades, cement paste supplying pipes, multi auger motor, etc.) to establish a standardized DCM construction cycle (withdrawal rate of mixing blades) which can provide the prescribed strength. The result of the field strength test for cored DCM specimens shows that the averaged strength is larger than the target strength and the distribution of the strength(with a defect rate of 7%) also satisfies with the quality control normal distribution curve which allows defect rate of 15.9%.

  • PDF

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Characteristics of Landsat ETM+ Image for Gomso Bay Tidal Flat Sediments (곰소만 조간대 퇴적물의 Landsat ETM+ 자료 특성)

  • 류주형;최종국;나영호;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.117-133
    • /
    • 2003
  • A field survey and Landsat ETM+ image acquisition carried out simultaneously. Using these data, we attempted to establish relationships between tidal flat environmental factors and reflectance observed by ETM+, and to set up a new critical grain size useful for optical remote sensing. Although the grain size of 4 $\Phi$ has been conventionally used as a critical size by sedimentologists, the correlation with optical reflectance was very low. Instead, the grain size of 2 $\Phi$ showed a relatively high correlation coefficient, 0.699, with ETM+ band 4, except near tidal channels in upper tidal flat. We concluded that the grain size of 2 $\Phi$ would be better to use for a critical grain size in Gomso Bay. The grain size also correlated well with moisture content having a correlation coefficient of -0.811 when the 2 $\Phi$ criterion was used. The results of factor analysis showed moisture content was more important parameter than topographic relief, and they were different from German tidal flats in which topographic relief was the prior factor This can be explained by finer grain composition of the Gomso bay tidal flat. In short, moisture content and topography as well as grain size should be considered in tidal flat remote sensing.

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

A Study of Friction in Microfoming Using Ring Compression Tests and Finite Element Analysis (링 압축시험과 유한요소해석을 이용한 미세성형 공정에서의 마찰특성에 관한 연구)

  • Kim, Hong-Seok;Kim, Geung-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1471-1478
    • /
    • 2010
  • Microforming processes have recently attracted considerable attention from industry and academia since they enable the production of microscale parts using various materials at a high production rate, minimize material loss, and provide parts with excellent mechanical properties. However, for successful development and applications of the microforming process it is critical to take the tribological size effect into consideration because previous studies have shown that traditional friction models for macroscale forming generate significantly erroneous results in the case of microforming. In this paper, we performed scaled ring compression experiments to investigate the tribological size effect of aluminum and brass materials in microforming. The sensitivity of the interfacial friction to the deformation characteristics of the ring was quantitatively analyzed by the finite element analysis. In addition, a friction model based on slip line field and upper boundary techniques was used to theoretically explain the friction mechanism in microforming.

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment (곡선경계처리법을 이용한 주기적으로 진동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min;Jhon, Myung-S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.895-903
    • /
    • 2007
  • CMBT(Curved Moving Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the curved solid wall of moving obstacle in a flow field. In our research CMBT was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of CMBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of Navier-Stokes equation with deforming mesh technique. The simulations were performed in a moderate range of reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is ar Re=250 and the result is the same as the case of fixed cylinder. As the cylinder approaching to one wall, the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. As the velocity ratio increase the third vortex are generated by interacting with the 2nd vortexes developed on the upper and lower wall boundary layer. The resultant $C_d$ decrease as reynolds number increasing and the Cd approached to a value when Re>1000.

Critical Comments on Akagki's Pediment Morphology in Korea (한국 Pediment 지형의 연구성과에 관한 비판과 문제점)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.99-120
    • /
    • 2005
  • It is a wrong decision to use only topographic and geological maps for the study of pediment morphology in Korea. For the study of pediment morphology it is necessary to survey the earth structure by field techniques. In Korea, pediments are mostly found in granite areas with hardrock cover. But, pediments also developed in gneiss areas and what is worse in limestone areas. So, all areas in Korea developed pediment morphology. Only in South Korea pediments show a direction from south to north or from west to east. They developed only in right angles to each other, either parallel or in right angles to the strike, depending on the bedrock structure. Pediments are found in two levels. The upper level pediments are correlated with the lower level erosion surface. Besides this pediments are found in Hoenggye-ri of the Taegwolryong area in a third level 800m above sea level. The pediments developed in basins, at the lower margins of steep slopes dividing three levels of erosion surfaces and around the residual mountains on the erosion surfaces. The first belong to the early stage of pedimentation, the second to the middle stage and the third to the last stage. Also, in Korea monadnock and residual mountain have developed the pediments are correlated the slope of the hinter mountains. Akagki states that the only pedimentation times have been times of arid climate and that they are dissected by gulley erosion with climatic change, but writer's study proves that pedimentation takes place with eustatic movement, reckless defore-station and convectional rain. These facts indicate that the landforms, geological character and process of erosional cycle of the pediments in Korea resemble much those in the Chugoku Mountains of south wertern Japan, but they are larger in scale than those in the Chugoku Mountains. In conclusion, while Akagki emphasizes the geological character and climatic change in pedimentation, the writer studies prove that eustatic movements, especially the sea level rise after the Wurm age are important factors for pedimentation. Besides this the author's studies allow a classification of gentle slopes.

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.