• Title/Summary/Keyword: Upper Motion Vector

Search Result 16, Processing Time 0.024 seconds

MOTION VECTOR DETECTION ALGORITHM USING THE STEEPEST DESCENT METHOD EFFECTIVE FOR AVOIDING LOCAL SOLUTIONS

  • Konno, Yoshinori;Kasezawa, Tadashi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.460-465
    • /
    • 2009
  • This paper presents a new algorithm that includes a mechanism to avoid local solutions in a motion vector detection method that uses the steepest descent method. Two different implementations of the algorithm are demonstrated using two major search methods for tree structures, depth first search and breadth first search. Furthermore, it is shown that by avoiding local solutions, both of these implementations are able to obtain smaller prediction errors compared to conventional motion vector detection methods using the steepest descent method, and are able to perform motion vector detection within an arbitrary upper limit on the number of computations. The effects that differences in the search order have on the effectiveness of avoiding local solutions are also presented.

  • PDF

Search Range Reduction Algorithm with Motion Vectors of Upper Blocks for HEVC (상위 블록 움직임 벡터를 이용한 HEVC 움직임 예측 탐색 범위 감소 기법)

  • Lee, Kyujoong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • In High Efficiency Video Coding (HEVC), integer motion estimation (IME) requires a large amount of computational complexity because HEVC adopts the high flexible and hierarchical coding structures. In order to reduce the computational complexity of IME, this paper proposes the search range reduction algorithm, which takes advantage of motion vectors similarity between different layers. It needs only a few modification for HEVC reference software. Based on the experimental results, the proposed algorithm reduces the processing time of IME by 28.1% on average, whereas its the $Bj{\emptyset}ntegaard$ delta bitrate (BD-BR) increase is 0.15% which is negligible.

Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors (시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.

A Study on New Hierarchical Motion Compensation Pyramid Coding (새로운 계층적 이동 보상 피라미드 부호화 방식 연구)

  • 전준현
    • Journal of Broadcast Engineering
    • /
    • v.8 no.2
    • /
    • pp.181-197
    • /
    • 2003
  • Notion Compensation(MC) technique using Sub-Band Coding with the hierarchical structure is efficient to estimate real motion. In the hierarchical pyramid method, low-band MC pyramid method is popular, where the upper layer estimate the glover motion and next lower layer estimate the local motion. The low-band MC pyramid scheme has two problems. First, because the quantization errors at lower layer are accumulated when using coding and quantizing, it is impossible to search the exact Motion Vector(MV) Second, because of the top-down search problem in the hierarchical structure, MV mismatch in upper layer causes serious MV in lower layer So. we propose new hierarchical MC pyramid method based on edge classification. In this Paper, we show that the performance of proposed Pass-band motion compensation pyramid technique is better than low-band motion compensation pyramid. Also, in the pyramid motion estimation, we propose initial MV estimation scheme based on the edge-pattern classification. As a result, we find that PSNR was increased.

Asian Dust Transport during Blocking Episode Days over Korea

  • Moon, Yun-Seob;Kim, berly-Strong;Kim, Yoo-Keun;Lim, Yun-Kyu;Oh, In-Bo;Song, Sang-Keun;Bae, Joo-Hyon
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • Asian dust(or yellow sand) occurs mainly in spring and occasionally in winter in east Asia, when the weather conditions are under an upper trough/cut-off low and surface high/low pressure system during blocking episode days associated with the stationary patterns of the upper level jet stream. The transport mechanism for Asian dust during the blocking episode days in spring 2001 was analyzed using the TOMS aerosol index and meteorological mesoscale model 5(MM5). Based on the E vector, an extension of an Eliassen-Palm flux, the blocking episode days were found to be associated with the development of an upper cut-off low and surface cyclones. Concurrently, the occurrence of dust storms was also determined by strong cold advection at the rear of a jet streak, which exhibited a maximum wind speed within the upper jet stream. As such, the transport mechanism for Asian dust from China was due to advection of the isentropic potential vorticity(IPV) and isentropic surfaces associated with tropopause folding. The transport heights for Asian dust during the blocking episode days were found to be associated with the distribution of the isentropes below the IPV At the same time, lee waves propagated by topography affected the downward motion and blocking of Asian dust in China. The Asian dust transported from the dust source regions was deposited by fallout and rain-out with a reinforcing frontogenesis within a surface cyclone, as determined from satellite images using TOMS and GMS5. Accordingly, these results emphasize the importance of forecasting jet streaks, the IPV, and isentropes with geopotential heights in east Asia.

Comparison of Tilt Variation in the Otter Board and Codend of Bottom Trawl Gear during Fishing Operations

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2014
  • The motion of the otter board on a trawl can affect the motion of trawl nets, and the motion of the codend can affect fish selectivity. Preliminary measurements of the tilt of bottom trawl gear were carried out to compare the tilts of the otter board and codend. The tilt of the otter board was measured by Vector and tilt at 1.5 m anterior to the end of the codend, and the middle upper panel was measured with a micro-DST-tilt logger. Tilt data such as yaw, pitch, and roll were analyzed by the fast Fourier transformation method and global wavelet and event analyses for the period or amplitude. The mean period ${\pm}$ standard deviation of the tilt in the otter board, $(5-6){\pm}2s$, was similar to the period of the codend, $(4-6){\pm}(2-3)s$, whereas the amplitude of the codend was greater than that of the otter board. The yaw and pitch periods were not significantly different between the otter board and codend, but roll was different. Furthermore, the tilt period frequencies of the otter board and codend were not significantly different. Accordingly, the tilt motion of the codend was mostly related to the tilt of the otter board.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Biomechanical Analysis of Throw Movement to Second Base in High School Elite Baseball Catchers (고등학교 야구 포수의 2루 송구 동작에 대한 운동역학적 분석)

  • Kim, Sung Yong;Park, Jong Chul;Byun, Kyung Seok;Baek, Hee Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Objective: The purpose of this study was to provide quantitative and objective data of throwing movement in baseball catcher through biomechanical analysis. Method: Eight high school baseball catchers (age: 17.3±0.7 yrs, height: 175.3±4.5 cm, weight: 82.5±9.0 kg, Career: 7.4±2.1 yrs) participated and 3-dimentional motion capture system and electromyography (EMG) were used in this study. Results: The maximum center of mass position displacement was observed in forward direction. The linear velocity magnitude of the upper extremity segments were showed as "wrist>elbow>shoulder" which is indicative of kinematic chain. For kinetic EMG data, we also observed the greater muscle activation in the left brachioradial and erector spine muscles muscle that during throwing movement. Conclusion: We expect that biomechanical data from this study will provide important training implications to baseball coaches and trainers in order to effectively train their baseball catchers.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Evaluation on the Usefulness of Lung Tumor Stereotactic Radiosurgery Applying the CyberKnife $Synchrony^{TM}$ Respiratory Tracking System (사이버나이프 $Synchrony^{TM}$ 호흡 추적 장치를 이용한 폐종양 방사선수술의 유용성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Choi, Jun-Gu;Chae, Hong-In
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.379-386
    • /
    • 2010
  • This study evaluated the motion of tumors during the entire period of therapy and the accuracy of radiosurgery among forty eight lung tumor patients who were underwent radiosurgery using the CyberKnife Synchrony Respiratory Tracking System. The motion of lung tumor was measured by the coordinates of a gold acupuncture needle inserted into the tumor or the area around the tumor using the CyberKnife image guided system. Then the accuracy of radiosurgery was evaluated based on the error of correlation computed with the motion tracking system. The lung tumor motion is Cranio-Caudal direction by an average of $2.63{\pm}1.87\;mm$, moved left-right direction by $1.13{\pm}0.71\;mm$, and anterior-posterior direction by $1.74{\pm}1.16\;mm$. The degree of rotational movement was $1.66{\pm}1.66^{\circ}$ on X axis, $1.20{\pm}0.97^{\circ}$ on Y axis, and $1.18{\pm}0.73^{\circ}$ on Z axis. The vector of translation movement was measured to be $3.78{\pm}2.00\;mm$ on the average. The results show that directions of Cranio-Caudal(p < 0.001), anterior-posterior direction(p < 0.029), and three dimensional vector value(p < 0.002) showed statistical significance, because the lower side of tumor showed more intensive movement compared to the upper side of tumor. The radiosurgery was carried out by compensating the motion of tumor after accurate investigation of the correlation error with the average of $0.95{\pm}0.62\;mm$ during the lung tumor radiosurgery with the CyberKnife Synchrony Respiratory Tracking System.