• Title/Summary/Keyword: Uplink

Search Result 584, Processing Time 0.025 seconds

Performance Analysis of Nonlinear Satellite Communication System in the CCI And ACI Interference Channel (간섭채널에서 비선형 위성 통신 시스템의 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.166-173
    • /
    • 2004
  • Satellite communication system uses a high non-linear HPA(high power amplifiers) in the earth station and satellite transponder. Therefore, it is important to consider the nonlinear effect of HPA on the communication system. In this paper, we find the variation of power spectrum density by nonlinearity HPA and the change of harmonic component according to IBO (input back-off). When the BPSK is used for satellite communication system, we analyze BER performance including the external co-channel interference (CCI) and the adjacent channel interference (ACI) resulting from the HPA nonlinearity. BER degrades as ACI magnitude grows up when the uplink SNR, uplink SIR (signal to co-channel interference power ratio) and downlink SIR are constant at some level. In case there is only non-linear HPA in the satellite, it is shown that BER considerably depends on the ACI magnitude ACI. When there are two non-linear HPAs in the both earth station and satellite, much BER degradation results from the CCI and ACI.

Uplink Resource Management Scheme for Multiple QoS Traffics in cdma2000 type Networks: Modified Weighted G-Fair Scheduler with RoT Filling (cdma2000-type 네트워크의 역방향 링크에서의 다중 QoS 서비스 보장을 위한 자원 관리 기술: Modified Weighted G-Fair 스케줄러)

  • 기영민;김은선;김동구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.786-793
    • /
    • 2004
  • Autonomous data rate control scheme of current IxEV-DO uplink networks can not supper the various QoS requirements of heterogeneous traffics nor hold rise-over-thermal OtoT) constraints. In this paper, an uplink resource management scheme called the modified weighted g-fair (MWGF) scheduler with RoT filling is proposed and evaluated for heterogeneous traffics in cdma2000 type uplink networks. The proposed scheme belongs to a family of centralized resource management schemes and offers QoS guarantee by using priority metrics as well as lower system loading by holding RoT constraints using RoT filling method. With some case-study simulations, the proposed algorithms shows lower average delays of real time users compared to that of autonomous rate control by 29 - 40 %. It also shows the 1.0 - 1.3 dB lower received RoT level than autonomous rate control schemes, leading to lower network loading.

The Coexistence Solution using Transmission Schedule and User's Position Information in Cognitive Radio Networks (전송 스케줄 및 사용자 위치 정보를 이용한 무선 인지 네트워크의 동일 주파수 대역 공존 방안)

  • Lee, Kyu-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.189-203
    • /
    • 2012
  • In cognitive radio networks, a secondary user opportunistically accesses an empty channel based on periodic sensing results for avoiding possible interference to the primary users. However, local sensing does not guarantee the full protection of the primary users because hidden primary receivers may exist within the interference range of the secondary transmitter. To protect primary systems and simultaneously to maximize utilization of the secondary users, we need to derive carefully designed coexistence solutions for various network scenarios. In this paper, we propose coexistence conditions without any harmful interference in accordance with the uplink/downlink schedule and user position. We have classified the coexistence conditions into four different scenario cases depending on the provided information to the secondary network basestations. Computer simulation results demonstrated that the proposed method can be applied to the real cognitive radio system to improve the communication probability of CR devices.

A Contention Window Adjustment Algorithm for Improving Fairness between Uplink and Downlink in IEEE 802.11 WLANs (IEEE 802.11 무선랜의 업링크와 다운링크간 공평성 향상을 위한 Contention Window 조절 알고리즘)

  • Lim, Wan-Seon;Kim, Dong-Wook;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.329-336
    • /
    • 2011
  • This paper addresses the fairness issue between uplink and downlink traffic in IEEE 802.11 WLANs. Some solutions in existing work try to solve this issue by giving smaller minimum contention window (CWmin) value to an AP compared to stations. In contrast to the existing solutions, a proposed algorithm in this paper aims at finding CWmin values that not only provides fairness between uplink and downlink traffic among stations but also achieves high throughput. For this, in the proposed algorithm, an AP checks the number of stations that have uplink and downlink traffic, respectively. Based on this information, the AP calculates optimal CWmin values and announces it to stations. Our simulation results show that the proposed algorithm outperforms existing algorithms in terms of fairness and throughput.

Point-to-Point Communication of Cognitive Radios via Underlay Spectrum Sharing (언더레이 주파수 공유를 이용한 인지무선 통신장치의 점대점 통신방법)

  • Lee, Hye-Won;Han, Kwang-Hun;Hwang, Young-Woo;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.697-703
    • /
    • 2009
  • Cognitive radios are typically known to exploit vacant spectrum resources in order not to interfere with primary communication systems. However, cognitive radios may not be able to secure a clear spectrum band in a bustling spectrum band. Underlay spectrum sharing provides a way to cope with such a spectrum sharing problem. Cognitive radios share the same spectrum band with the spectrum licensees, i.e., primary users, by adjusting signal transmission power so as not to severely deteriorate the performance of the primary users. We propose an underlay spectrum sharing policy leveraging uplink spectrum resource to be used in a cellular network. A pair of end terminals attempts to establish a direct point-to-point link, and perform as cognitive radios in the sense that they share the uplink radio resource of other primary users. We formulate the transmit power constraints of the cognitive radios and propose a practical uplink band sharing framework. Our simulation results demonstrate that such an uplink sharing underlay direct link can enhance the throughput performance of point-to-point link with low overhead.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.

Improved Timing Synchronization Using Phase Difference between Subcarriers in OFDMA Uplink Systems (OFDMA 상향 링크 시스템에서 부반송파간 위상 회전 정보를 이용한 개선된 시간 동기 추정 알고리즘)

  • Lee, Sung-Eun;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • In this paper, the timing estimator based on the principle of the best linear unbiased estimator (BLUE) is proposed in OFDMA uplink systems. The proposed timing estimator exploits the phase information of the differential correlation between adjacent subcarriers. The differential correlation can extract the information about timing offset and mitigate the distortion of the signal caused by the frequency selectivity of channel. Compared with conventional methods, the proposed estimator shows more accurate capability in estimation. In addition, the estimator is hardly affected by the distortion caused by the frequency selectivity of channel. Simulation results confirm that the proposed estimator shows a small error mean and a relatively small error variance. In addition, the performance of the estimator is evaluated by means of SNR loss. It is shown by simulations that the SNR loss of the proposed estimator by estimation errors is less than 0.4 dB for the SNR values between 0 and 20 dB. This might indicate that the proposed estimator is suitable for the timing synchronization of multiple users in OFDMA uplink systems.

Analysis of Jamming Interference Characteristics in Nonlinear DRT Satellite Transponder System (비선형 DRT 위성 중계시스템의 재밍 간섭 특성 분석)

  • 이동형;유흥균;김기근;최영균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1341-1347
    • /
    • 2000
  • For the DRT satellite transponder system, BER and total SNR to be required in the earth terminal are evaluated under the condition of HPA nonlinearity in the FBJ(full-band jamming) or PBJ(partial-band jamming) of uplink and downlink. In case that the satellite Inter bandwidth( Ws) is same to the earth terminal bandwidth($W_r$),in conditions of uplink JSR 10[dB], downlink JSR 10[dB] and processing gain 30[dB], linear transponder system shows that uplink SNR needs to be 14.2[dB] to achieve the total SNR 10[dB] requirement in downlink SNR 14[dB]. However, Nonlinear transponder system with OBO(output backoff) 2[dB] requires 20.1 [dB] uplink SNR. From the above results, the nonlinearity of HPA in the satellite transponder causes the degradation of BER performance so that it is of interest to consider the power increase.

  • PDF

The Scheme for Improving the Performance of Ranging Code Detection over OFDMA Systems in Uplink (OFDMA 시스템 상향링크의 레인징 부호 검출 성능 향상 기법)

  • Kim Ki-Nam;Kim Jin-Ho;Cho Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.575-585
    • /
    • 2006
  • In Orthogonal Frequency Division Multiple Access (OFDMA) systems, timing synchronization in uplink is accomplished by an initial uplink synchronization called an initial ranging process. The Base Station's receiver synchronizes the symbol timing to specific user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol. The Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we propose an initial ranging symbol structure with common ranging code for phase shift estimation and compensation. We car estimate the average of phase shift that is generated by each user's STO and compensate this phase shift by using common ranging code. This scheme will suppress the MAI and provide better detection performance than conventional process.

Beam selection method for millimeter-wave-based uplink hybrid beamforming systems (밀리미터파 기반 상향링크 하이브리드 빔포밍 시스템을 위한 빔선택 방법)

  • Shin, Joon-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.818-823
    • /
    • 2016
  • Millimeter wave (mm-wave) communication systems provide high data rates owing to the large bandwidths available at mm-wave frequencies. Recently, analogue and digital combined beamforming, namely "hybrid beamforming" has drawn attentions owing to its ability to realize the required link margins in mm-wave systems. Taking into account the radio frequency (RF) hardware limitations, such as the analogue phase shifter gain constraint and the low resolution of the phase controller, we introduce an uplink hybrid beamforming system that includes discrete Fourier transform (DFT) based "fixed" analogue beamforming. We adopt a zero-forcing (ZF) multiple-input multiple-output (MIMO) equalizer to eliminate the uplink inter-user interferences. Moreover, to improve the sum-rate performances, we propose a transmit beam selection algorithm which makes the uplink effective channels, i.e., the beamformed channels, become near orthogonal. The effectiveness of the proposed beam selection algorithm was verified through numerical simulations.