• Title/Summary/Keyword: Upland-crop

Search Result 586, Processing Time 0.025 seconds

Multifactor Balance Concept as a Primary Countermeasure for Environmental Stresses of Crops (작물의 일차적 재해방지 요건으로서의 다요인 평형조절 개념)

  • 박천서
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.1-12
    • /
    • 1989
  • The primary countermeasure for environmental stresses of crops grown in Korea would be to maintain top soil content of available B for upland crops and Si for low land rice in balance with other nutrient elements such as N, P and K, so as to maintain those nutrient balances in plants. Development of standard levels of elements in soils for balances uptake of those elements by plants are needed under the multi nutrient factor balance concept using the soil test results.

  • PDF

Revised Soil Survey of Yangju City in Gyunggido

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Keun-Tae;Cho, Hyun-Jun;Jung, Sug-Jae;Choi, Jung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2017
  • Recently, agricultural lands have decreased sharply, which was caused by huge housing site, urbanization, land consolidation, and road construction etc. In particular, Yangju city near Seoul city has the most severe land use change in Korea. Therefore, we analyzed changes of land use, soil properties, and soil information in order to provide the basic soil information and soil management practices in this city. The area of crop cultivated land in Korea (2015) reduced by 12,090 ha compared to ones from the previous year (2014). The paddy field decreased by 25,421 ha but, upland field increased by 13,331 ha. One of the reasons for the reduction of the paddy field was converting paddy field to upland (20,916 ha) > others (3,056) > building (2,571) > public facilities (847) > idle land (217). But, reasons for increase of upland field were switching paddy to upland (20,916 ha) > land developed (634). The main reason of converting paddy field to upland was changing from rice to more profitable speciality crops or pulses. The cropland area (paddy fields, upland, orchard) of Yangju city reduced by 1,412 ha (2015/2014). The ratio of cropland area in each city reduced by 22.9% dramatically compared 2015 to 1999. The paddy fields located in alluvial plains in Yangju city were changed into upland or green house. The drainage classes of soil have been deteriorated because the flows of water were intercepted by road construction and other disturbance to water flows. In particular, paddy fields have been changed to not only upland, orchard, greenhouse cultivation but also to fallow and soil dressing on paddy in Yangju city. To analyze result of soil survey of Yangju city, 858 soil codes (soil phases) were used and the area was 105.17ha. The number of soil series increased from 60 to 65, and that of soil phase increased from 105 to 124. The largest increased area was Noegog soil series. 125.7ha of Neogog soil series was incorporated from the existing Sachon, Yecheon and Eungog soil series. The soil suitability class of paddy field in Ogjung huge housing site of Yangju city was the 4th grade for 32.6% of the area. The soil suitability classes of upland were 2nd and 3rd grade for 72.4% of the area. Farm land with high quality should be conserved by related law.

Crop Rotation of the Korean ginseng (Panax ginseng C.A.Meyer) and the Rice in Paddy Field (고려인삼(高麗人蔘)의 답전윤환재배(畓田輪換栽培) 효과(效果))

  • Jo, Jae-Seong;Kim, Choong-Soo;Won, Jun-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • The crop rotation of rice and ginseng in paddy field has very important meaning because up-land field suitable for ginseng cultivation is now being insufficient day by day in main ginseng production area. This studies were conducted to define basic problems related to ginseng cultivation and replanting in paddy field. In Keumsan district, the most serious problem on ginseng cultivation in paddy field was excess of mineral salts left behind in the soil of rice cultivation. The amounts of organic matters, CEC and the mineral elements including potassium were higher in the soil of paddy ginseng field compared to those of upland. Plant growth of 3 and 4 year old ginseng and root yield of four year old ginseng cultivated in paddy field of 1st and replanting were not decreased compared to those of 1st - planting of up-land field, but those were significantly decreased in replanted compared to those of first planted upland field. Crop rotation with ginseng and rice in paddy field seemed to be a good way to avoid hazards of continuous cropping of ginseng with it's outyield of root and less infection of diseases. Amounts of crude saponin and ginsenosides of ginseng cultivated in paddy field were not differ from those of upland field.

  • PDF

Estimating upland crop water use in Jeju (제주도 밭작물 용수량 산정방법)

  • Lee, Yong-Il;Kim, Hyeon-Soo;Lim, Han-Cheol;Song, Chang-Khil;Moon, Kyung-Hwan;Kang, Bong-Kyoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.247-250
    • /
    • 2003
  • Crop evapotranspiration rates of the garlic and potato were measured in a lysimeter at National Jeju Agricultural Experiment Station, Rural Development Administration, Korea. The crop coefficients were calculated using the values of the actually measured evapotranspiration(ETcrop) and the reference crop evapotranspiration (ETo) estimated by the Penman-Monteith equation. The maximum crop coefficients of the potato and garlic were 1.07 and 1.31 respectively. A water requirement model using the moisture accounting method is presented. The moisture accounting method is illustrated by the example (Table 2). As soon as the accumulated deficit exceeds 22 mm, a further irrigation is supplied.

  • PDF

Weed Flora Diversity and Composition on Upland Field of Korea (우리나라 밭작물 재배지 잡초 발생 및 분포현황)

  • Lee, In-Yong;Oh, Young-Ju;Hong, Sun-Hee;Choi, Jun-Keun;Heo, Su-Jeoung;Lee, Chae-Young;Hwang, Ki-Seon;Park, Kee-Woong;Cho, Seng-Hyun;Kwon, Oh-Do;Im, Il-Bin;Kim, Sang-Kuk;Seong, Deok-Gyeong;Chung, Young-Jae;Kim, Chang-Seok;Lee, Jeongran;Seo, Hyun-A;Jang, Hyung-Mok
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.159-175
    • /
    • 2015
  • Surveys of weed species on upland fields were conducted in Korea to investigate the occurrence of weed flora from April to May 2014 for winter crop fields and from July to August 2014 for summer crop fields. From the nation-wide survey, 375 weed species in 50 families were identified and classified to 162 annuals, 78 biennials and 135 perennials. Based on the occurrence ratio, the most weed species belonged to Compositae (73 species). 44 and 25 weed species belonged to Poaceae and Polygonaceae, respectively, and these 183 weed species in the most five families accounted for 49% of total weed occurrence. While 287 weed species in 45 families occurred in the winter crop fields, 339 weed species in 47 families occurred in summer crop fields. The most dominant weed species in Korean upland fields were Digitaria ciliaris, followed by Portulaca oleracea, Acalypha australis, Chenopodium album, Rorippa palustris etc. 129 weed species in 25 families were considered as exotic weeds. Based on the importance analysis, the highest value was C. album followed by Amaranthus lividus, Conyza canadensis etc. This information could be useful for estimation of future weed occurrence, weed population dynamics and establishment of weed control methods in upland fields of Korea.

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

Physicochemical Properties of Upland Soils under Organic Farming (유기농 밭토양의 물리화학적 특성)

  • Cho, Hyun-Jun;Hwang, Seon-Woong;Han, Kyung-Hwa;Cho, Hee-Rae;Shin, Jae-Hun;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.98-102
    • /
    • 2009
  • Various physical properties of soils were investigated in the areas where organic farming had been practiced widely, for upland fields. The investigations were also conducted in the nearby fields under conventional to find out the influence of organic farming on the physical properties of soils. The investigated properties involved bulk density, hardness, shearing resistance, friction resistance, sinking depth of small rectangular board, water stable aggregates and the depth of soil available to plants. By and large, the practice of organic farming tended to improve all of the physical properties soils, investigated in upland soils. However, in case of water stable soil aggregates in upland soils, the reverse was previous data; in those soils water stable soil aggregates were less under organic farming. It was suspected that this might be due to intensive application of the organic materials with high C/N ratio like wood chips and wood bark. The contents of OM, Av. P2O5, and Ex. cations were higher in organic farming than those of nearby fields under conventional, due to heavy organic matter application. From the results, It could be concluded that soils under organic farming were looser and softer than those under conventional as shown by lower bulk density and hardness, but that the effect of organic farming on water stable aggregates were low.

Weed Population Distribution and Change of Dominant Weed Species on Upland Field in Gyeongnam Province of Korea (경남지역 밭 잡초 발생분포 및 군락변화)

  • Seong, Deok-Gyeong;Bea, Sung-Mun;Kim, Young-Gwang;Cho, Yong-Cho;Lee, Sang-Dae;Shim, Sang-In;Chung, Jung-Sung
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.199-208
    • /
    • 2015
  • This study was conducted to provide basic information for weed control by surveying the occurrence of weed species in upland crop fields in Gyeongnam province of Korea. The result of this survey, 55 weed species 21 families in barley fields, 56 weed species 22 families in garlic fields, 47 weed species 19 families in onion fields, 68 weed species 26 families in Chinese cabbage fields, 54 weed species 22 families in potato fields, 62 weed species 25 families in sweet potato fields, 87 weed species 29 families in red pepper fields, 79 weed species 28 families in corn fields, 84 weed species 29 families in soybean fields. The most dominant weed species in upland crop fields of Gyeongnam province were Alopecurus aequalis var. amurensis 20.7% (barley fields), Cardamine flexuosa 12.3% (garlic fields), Chenopodium ficifolium 18.7% (onion fields), Portulaca oleracea 8.1% (Chinese cabbage fields), Chenopodium ficifolium 13% (potato fields), Digitaria ciliaris 12.6% (sweet potato fields and red pepper fields) and Digitaria ciliaris 11.3% (corn fields), 13.2% (soybean fields). This information could be useful for establishment of future weed control methods in Gyeongnam province.