• Title/Summary/Keyword: Upland-crop

Search Result 586, Processing Time 0.04 seconds

Optimization of Storage Tank Installation Locations for Pipeline Water Supply Using Genetic Algorithm (유전자 알고리즘을 이용한 관수 저류조의 공간배치 최적화)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.43-53
    • /
    • 2022
  • Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.

Potato-maize double cropping using paddy field in southern plain of Korea

  • Seo, Jong Ho;Hwang, Chung Dong;Yi, Hwi Jong;Choi, Weon Young;Bae, Hyun Kyung;Kim, Sang Yeol;Oh, Meong Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.345-345
    • /
    • 2017
  • In order to reduce rice cultivation area in paddy fields and to increase domestic self-sufficiency of imported upland grain, it is necessary to increase double cropping area of upland crops in paddy field in accordance with decrease of rice consumption in Korea. The double cropping of spring potato-summer grain maize can be combined because of enough growing season in the southern plain of Korea. Spring potato, which is profitable, can be planted in the late February and harvested in the late May as the main crop. Subsequent grain maize can be planted in early June and harvested in November (maturity in the early October). Spring potato (variety Soomi) yielded $2,544kg\;10a^{-1}$ (tuber) when planted in late February, 2016. When maize was planted in June as the second cropping crop, though growth of plant decreased much, grain yield decreased slightly compared to normal planting in April or May. There was enough time to dry maize ear in the field after maturity before harvesting, which saved labor and time for grain drying, since there is no autumn planting at the double cropping of spring potato-summer grain maize. When grain maize (variety Gwangpyeongok) was planted in the early June (June $10^{th}$), average grain yield of above $860kg\;10a^{-1}$ over 2 years of 2015 and 2016 was obtained, and the annual total yield (potato tuber + maize grain) of 3,400 kg $10a^{-1}$ was obtained. The result indicates that the double cropping of spring potato-summer maize using paddy fields in southern plain of Korea, could contribute to the self-sufficiency of upland crops through the maximum production.

  • PDF

Genetic Improvement of Maize by Marker-Assisted Breeding (분자마커를 활용한 옥수수 육종)

  • Kim, Jae Yoon;Moon, Jun-Cheol;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.109-127
    • /
    • 2014
  • Maize is one of the most important food and feed crops in the world including Southeast Asia. In spite of numberous efforts with conventional breeding, the maize productions remain low and the loss of yields by drought and downy mildew are still severe in Asia. Genetic improvement of maize has been performed with molecular marker and genetic engineering. Because maize is one of the most widely studied crop for its own genome and has tremendous diversity and variant, maize is considered as a forefront crop in development and estimation of molecular markers for agricultural useful trait in genetics and breeding. Using QTL (Quantitative Trait Loci) and MAS (Marker Assisted Breeding), molecular breeders are able to accelerate the development of drought tolerance or downy mildew resistance maize genotype. The present paper overviews QTL/MAS approaches towards improvement of maize production against drought and downy mildew. We also discuss here the trends and importance of molecular marker and mapping population in maize breeding.

Cultural Management System and Weed Control in Upland Fields (전작 경종관리와 잡초방제)

  • Jong-Yeong Pyon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 1978
  • Cultural practices favoring the crops are one of the excellent weed control measures in upland crops. The primary cultural method for weed-management may include planting of weed-competitive cultivars, proper planting time and spacing, optimum rate and placement of fertilizer, crop rotation, mulching, and timely tillage. However, cultural method must be applied as a part of the program along with all other available means for controlling weeds since this method alone is not adequate. The efficient and economical weed control can only be achieved by combinating cultural, mechanical method that supplement each other into a weed management system. Intelligent selection of weed control, however, presuppose knowledge of the life history and growth requirements of the weed and its interaction with the environment.

  • PDF

Physiological responses of selected Philippine upland rice genotypes evaluated using drought and salinity stress

  • Zapico, Florence;Aguilar, Catherine Hazel;Laniton, Lyn Jean;Lincay, Reygiene;Duldoco, Roman Abdul Kadir;Leandres, Jacy Deneb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.306-306
    • /
    • 2017
  • Screening for drought and salinity tolerance was undertaken for selected Philippine upland rice landraces during germinative and seedling stages to identify varieties which can potentially be grown in marginally dry and saline soils. While increasing PEG and NaCl concentrations caused obvious signs of injury to all rice genotypes, considerable varietal differences were noted in the nature of responses providing evidence that these genotypes possess broad intraspecific genetic variations for drought and salt tolerance. Inconsistent responses of these varieties during both growth stages highlight complexities involved in stress responses and underscore the futility of utilizing a single stage in the rice plant's life cycle for physiological screening. Notwithstanding these perplexing responses, G_Katiil and Ml-Pilit Tapul were observed to thrive relatively well despite increased salt and drought stress during early growth stages and may therefore possess genes needed in crop improvement efforts for drought and salinity tolerance. While these results do not reflect the entire spectrum of adaptive expression to drought and salinity stress during the life cycle of the upland rice plant, they nonetheless provide an easy, reliable and reproducible method for preliminary identification of drought and salt tolerant rice varieties.

  • PDF