• Title/Summary/Keyword: Upland Soils

Search Result 326, Processing Time 0.03 seconds

Population, Symbiotic Effectiveness, and Protein Profile Patterns of Indigenous Rhizobium leguminosarum biovar viciae to Korean Soils

  • Kang, Ui-Gum;Kim, Min-Tae;Lee, Bong-Choon;Lee, Chang-Hoon;Yang, Chung-Mok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.562-573
    • /
    • 2017
  • Some symbiotic characteristics of native Korean Rhizobium leguminosarum biovar viciae were analysed to get some informations desirable for cultivation of hairy vetch (Vicia villosa Roth) using its symbiont in Korea. The size of indigenous populations of R. leguminosarum biovar viciae was higher in seven upland soils showing $1.7{\times}10^2{\sim}5.8{\times}10^4cells\;g{\cdot}soil^{-1}$, which appeared to be 10% and 37% higher for cultivated and uncultivated soils of hairy vetch, respectively, than seven paddy soils with $1.7{\times}10^2{\sim}1.7{\times}10^4cells\;g{\cdot}soil^{-1}$. In symbiotic potentials, however, the yields of hairy vetch treated with 10-fold-diluted ($10^{-1}$) inoculum and 1000-fold-diluted ($10^{-3}$) one was 11.2% and 8.8% more, respectively, in paddy than upland. Hairy vetch inoculated with either strain KHR 106 from Sacheon or strain KHR 120 from Yesan among native Korean R. leguminosarum biovar viciae isolates was of similar yield increment of 16% (p < 0.05) in upland soils with native R. leguminosarum biovar viciae of $5.8{\times}10cells\;g{\cdot}soil^{-1}$. In case of coinoculation of the two strains, however, the yields was not significantly increased. In especial, isolate KHR 106, KHR 120, and KHR 122 from Suwon, which has also good symbiotic effectiveness, showed different protein profile patterns each other. As a result, hairy vetch is possibly able to use atmospheric nitrogen through symbiotic relationship with diverse native R. leguminosarum biovar viciae in Korean arable lands. For safe and good production of hairy, however, the use of superior strains with high symbiotic effectiveness and competitiveness will be desirable.

The Criteria of Optimum Phosphate Fertilizer Recommandation based on Phosphate Fertilizer Index (P.F.I) Method on Upalnd and Paddy Soils (논 밭 토양(土壤)에 있어서 인산시비지수(燐酸施肥指數)를 이용(利用)한 적정시비량(適正施肥量) 추천(推薦))

  • Hwang, Young Soo;Hong, Chong Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.4
    • /
    • pp.226-232
    • /
    • 1982
  • The incubation study of the phosphate Fertilizer Index (P.F.I) fertilizer recommandation method combining two factors-retention capacity of phosphate and available soil phosphate was conducted to test the applicability on both upland and paddy soils. The relationship between added P and the square root of the $NH_4OAc-P$ (for upland) or Bray No.1-P (for paddy) was a straight line for most of soils but was not straight for some soils which are low in phosphate absorption coefficient (P.A.C) However, the relationship between the value of the slop (termed as P.F.I) and the phosphate absorption coefficient was not showed a good correlation. The P.F.I was highly correlated with extractable Al on upland soils. The effect of extractable Al on P.F.I is more pronounced on newly reclaimed soil than cultivated upland. In case of paddy soils the P.F.I showed a high correlation with active iron contents. Also, P.F.I method was compared to NPK field trial on paddy soils to eximaine the applicability of the method in determining phosphate fertilizer recommandation.

  • PDF

A Study on the Moisture Adsorption and Permeability Characteristics of Weathered Granite Soils (화강토의 풍화도가 수분흡착 및 침투성에 미치는 영향)

  • 이대훈;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.81-89
    • /
    • 1984
  • To examine the moisture adsorption and permeability characteristics, weathered granite soils of different degrees of weathering, cultivated upland soils and sands of Han-river were sampled. The results are as follows: 1. In case that the mother rock was same, the pF values under same moisture content decreased according as the grain size of soil became finer by the weathering process. 2. In case that the mother rock was different, the pF value varied by the behavior of clay minerals, and the cultivated upland soils showed more sensitive reaction than sands and fresh granite soils. 3. The pF value changed by the difference of primary moisture content and also influenced by soil structure, testing method and etc. 4. The pF value and compaction curve had close relation, however under same moisture content, the pF value decreased by the increment of density. 5. The permeability depend on the available void ratio between the soil particles according to the degree of weathering, and the pF value of available void water between the soil particles which related directly to permeability was about 3.3 except the void water holded in the soil particles. 6. As the above, the pF value and permeability were differentiated by degree of weathering, primary moisture content, density and etc. Therefore it is considered unreasonable to define uniformly by soil texture.

  • PDF

Changes of Humus Types Affected by Application of Animal Manures Compostin Jeju Upland Soil (가축분 퇴비의 시용량에 따른 제주 밭토양의 부식의 형태별 함량 변화)

  • Hwang, Ki-Sung;Yoo, Bong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • In Jeju island, the southernmost island of Korea, the field soils are mostly consisted of volcanic and non-volcanic soils. Animal manures of 0, 50, 100, and 150 MT/ha were treated to analyse the humus content changes by application amounts and the soil types. The results are as follows; Humus distribution type was A in the most of the volcanic soils while a few soils was type B, and it was possible to confirm that the humus process has occurred in the soils. Most of the non-volcanic soils was Rp and B type, therefore, the humus content change pattern was different from the volcanic soils. The nitrate-nitrogen content and the humus content showed positive correlation of $R^2=0.5263$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.524$. The carbon content and the humus content showed positive correlation of $R^2=0.469$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.550$.

Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use (토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Jong-Sik;So, Kyu-Ho;Lee, Sang-Hak
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Statistically estimated storage potential of organic carbon by its association with clay content for Korean upland subsoil

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Seo, Mi-Jin;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • Soil organic carbon (SOC) retention has gradually gotten attention due to the need for mitigation of increased atmospheric carbon dioxide and the simultaneous increase in crop productivity. We estimated the statistical maximum value of soil organic carbon (SOC) fixed by clay content using the Korean detailed soil map database. Clay content is a major factor determining SOC of subsoil because it influences the vertical mobility and adsorption capacity of dissolved organic matter. We selected 1,912 soil data of B and C horizons from 13 soil series, Sangju, Jigog, Jungdong, Bonryang, Anryong, Banho, Baegsan, Daegog, Yeongog, Bugog, Weongog, Gopyeong, and Bancheon, mainly distributed in Korean upland. The ranges of SOC and clay content were $0-40g\;kg^{-1}$ and 0 - 60%, respectively. Soils having more than 25% clay content had much lower SOC in subsoil than topsoil, probably due to low vertical mobility of dissolved organic carbon. The statistical analysis of SOC storage potential of upland subsoil, performed using 90%, 95%, and 99% maximum values in cumulative SOC frequency distribution in a range of clay content, revealed that these results could be applicable to soils with 1% - 25% of clay content. The 90% SOC maximum values, closest to the inflection point, at 5%, 10%, 15%, and 25% of clay contents were $7g\;kg^{-1}$, $10g\;kg^{-1}$, $12g\;kg^{-1}$, and $13g\;kg^{-1}$, respectively. We expect that the statistical analysis of SOC maximum values for different clay contents could contribute to quantifying the soil carbon sink capacity of Korean upland soils.

Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • The present study investigated variations in soil microbial communities by fatty acid methyl ester (FAME) and the chemical properties at 24 sites of upland soils in Gyeongnam Province. The electrical conductivity of the soil under potato cultivation was significantly higher than those of the red pepper and soybean soils (p < 0.05). The gram-negative bacteria community in potato soil was significantly lower than those in the garlic and soybean soils (p < 0.05). The communities of actinomycetes and arbuscular mycorrhizal fungi in the red pepper soil were significantly higher than those in the potato soil (p < 0.05). In addition, the cy17:0 to 16:$1{\omega}7c$ ratio was significantly lower in red pepper, soybean, and garlic soils compared with potato soil, indicating that microbial stress decreased. Consequently, differences in soil microbial community were highly associated with cultivated crop species, and this might be resulted from the difference in soil chemical properties.

Effect of Chemical Properties of Cultivation Soils on the Plant Growth and the Quality of Garlic (재배지 토양의 화학성이 마늘의 생육 및 품질에 미치는 영향)

  • Kim, Chang-Bae;Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2000
  • Effects of chemical properties of cultivation soils on the growth and quality of garlics were investigated. Garlics were cultivated in Uisung and Yechun, one of the major areas of garlic production, where upland and paddy fields have been used for garlic production for many years. Contents of phosphate, sulfur and potassium in the soils of paddy fields were relatively higher than those in the soils of upland fields, suggesting that the accumulation of inorganic salts has been progressed in the paddy fields. Soils of Uisung area showed higher pH s and lower contents of available phosphate compared to those of Yechon area. This result implies that the soils of Uisung area provide somewhat better chemical properties for garlic growth than those of Yechun area. Contents of inorganic salts such as phosphate, potassium and magnesium in the soils significantly affected the growth and quality of garlics. Garlics grown in the soils with lower contents of these inorganic salts exhibited better growth status and contained more pyruvate. More pyruvate was found in the garlics grown in upland fields than in paddy fields. Therefore, it is apparent that the accumulation of inorganic salts, especially available phosphate, in cultivation soils leads to the inhibition of garlic growth and in turn to the deterioration of garlic quality.

  • PDF

Classification of Hydrologic Soil Groups of Korean Soils Using Estimated Saturated Hydraulic Conductivity and Depth of Impermeable Layer (포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문학적 토양군 분류)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Zhang, Yongseon;Seo, Youngho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Hydrologic soil group is one of the important factors to determine runoff potential and curve number. This study was conducted to classify the hydrologic soil groups of Korean soils by considering saturated hydraulic conductivity and depth of impermeable layer. Saturated hydraulic conductivity of Korean soils was estimated by pedotransfer functions developed in the previous studies. Most of paddy soils were classified as D type due to shallow impermeable layer and low saturated hydraulic conductivity in B soil horizon. For upland and forest, soils classified to A and D types increased compared with former classification method because underestimated permeabilities and overestimated drainages were corrected and rock horizon in shallow depth was regarded as impermeable layer. Soils in mountainous land showed the highest distribution in A type, followed by D type. More than 60 % of soils in mountain foot-slope, fan and valley, alluvial plains, and fluvio-marine deposits were classified to D type because of land use such as paddy and upland.

Detection of soil microorganisms of an upland or cultivated Codonopsis lanceolata and investigation of them affecting on flavor substances (산더덕과 재배더덕에 존재하는 토양미생물 및 향기 유발에 영향을 미치는 미생물 탐색)

  • 김동주;이진실;정가진;이세윤
    • Korean journal of food and cookery science
    • /
    • v.20 no.4
    • /
    • pp.418-422
    • /
    • 2004
  • We investigated microbial populations of an upland and cultivated Codonopsis lanceolata. The microbial populations from both types of soils were also investigated. There were more than 10 microorganisms existed in upland than cultivated one. The total viable cell counts of C. lanceolata from upland and cultivated one, especially in the upper zone, were 9.7x10$\^$6/ CFU/g and 4.2${\times}$10$\^$6/ CFU/g, respectively. As a results, upper parts of C. lanceolata in upland were considered to harbour approximately more than 2.3 fold higher microorganisms than in cultivated one. However, the total viable cell counts between the two soil habitat, that is, 1.2${\times}$10$\^$7/ CFU/g from upland and 1.0x10$\^$7/ CFU/g from cultivated, were not significantly different. We also examined the unique flavor producing microorganisms in the soil extract broth including 25% C. lanceolata extract. One microorganism was detected in upper pars of C. lanceolata and upland soil. No. 6, microorganism causing the characteristic flavor of C. lanceolata was continued as Actinomyces by microscopy.