Browse > Article
http://dx.doi.org/10.7745/KJSSF.2017.50.6.562

Population, Symbiotic Effectiveness, and Protein Profile Patterns of Indigenous Rhizobium leguminosarum biovar viciae to Korean Soils  

Kang, Ui-Gum (National Institute of Crop Science, RDA)
Kim, Min-Tae (National Institute of Crop Science, RDA)
Lee, Bong-Choon (National Institute of Crop Science, RDA)
Lee, Chang-Hoon (National Institute of Agricultural Science, RDA)
Yang, Chung-Mok (National Institute of Crop Science, RDA)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.50, no.6, 2017 , pp. 562-573 More about this Journal
Abstract
Some symbiotic characteristics of native Korean Rhizobium leguminosarum biovar viciae were analysed to get some informations desirable for cultivation of hairy vetch (Vicia villosa Roth) using its symbiont in Korea. The size of indigenous populations of R. leguminosarum biovar viciae was higher in seven upland soils showing $1.7{\times}10^2{\sim}5.8{\times}10^4cells\;g{\cdot}soil^{-1}$, which appeared to be 10% and 37% higher for cultivated and uncultivated soils of hairy vetch, respectively, than seven paddy soils with $1.7{\times}10^2{\sim}1.7{\times}10^4cells\;g{\cdot}soil^{-1}$. In symbiotic potentials, however, the yields of hairy vetch treated with 10-fold-diluted ($10^{-1}$) inoculum and 1000-fold-diluted ($10^{-3}$) one was 11.2% and 8.8% more, respectively, in paddy than upland. Hairy vetch inoculated with either strain KHR 106 from Sacheon or strain KHR 120 from Yesan among native Korean R. leguminosarum biovar viciae isolates was of similar yield increment of 16% (p < 0.05) in upland soils with native R. leguminosarum biovar viciae of $5.8{\times}10cells\;g{\cdot}soil^{-1}$. In case of coinoculation of the two strains, however, the yields was not significantly increased. In especial, isolate KHR 106, KHR 120, and KHR 122 from Suwon, which has also good symbiotic effectiveness, showed different protein profile patterns each other. As a result, hairy vetch is possibly able to use atmospheric nitrogen through symbiotic relationship with diverse native R. leguminosarum biovar viciae in Korean arable lands. For safe and good production of hairy, however, the use of superior strains with high symbiotic effectiveness and competitiveness will be desirable.
Keywords
Hairy vetch; Rhizobium leguminosarum biovar viciae; Population; Symbiotic effectiveness; Protein profile;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 de Fatima, L.M., G. Kaschuk, O. Alberton, and M. Hungria. 2007. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements. Biol. Fert. Soils 43:665-674.   DOI
2 Depret, G., S. Houot, M.R. Allard, M.C. Breuil, R. Nouaim, and G. Laguerre. 2004. Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol. Ecol. 51:87-97.   DOI
3 Grossman, J.M., M.E. Schipanski, T. Sooksanguan, S. Seehaver, and L.E. Drinkwater. 2011. Diversity of rhizobia in soybean [Glycine max (Vinton)] nodules varies under organic and conventional management. Appl. Soil Ecol. 50:14-20.   DOI
4 Jeon, W.T, S.O. Hur, K.Y. Seong, I.S. Oh, M.T. Kim, and U.G. Kang. 2011. Effect of green manure hairy vetch on rice growth and saving of irrigation water. Korean J. Soil Sci. Fert. 44:181-186.   DOI
5 Kang, U.G. 1998. Symbiotic potential of Bradyrhizobium japonicum indigenous to arable land in sourthern parts of Korea. J. Korean Agric. Chem. Biotechnol. 41:247-252.
6 Kang, U.G. 2007. Enhancement of soil productivity by soybean cultivation. Korea Soybean Digest 24:1-13.
7 Kang, U.G., H.S. Ha, Y.T. Jung, H.W. Kang, H.D. Yun, and Y.L. Ha. 1996. Diversity of Bradyrhizobium japonicum with different colony morphology in intrinsic antibiotic resistance, serological property, and protein profile. Korean J. Soil Sci. Fert. 29:60-66.
8 Kang, U.G., J.H. Choi, J.S. Lee, and Y.T. Jung. 1991. Studies on the development of acid tolerant and superior nitrogen fixation symbionts for pasture on hilly land. Korean J. Soil Sci. Fert. 24:219-224.
9 Abdul-Baki, A.A. and J.R. Teasdale. 2007. Sustainable production of fresh-market tomatoes and other vegetables with cover crop mulches. Farmers' bulletin; FB-2280, U.S. Dep. of Agriculture, Agricultural Research Service, Washington, DC.
10 Andrade, D.S., P.J. Murphy, and K.E. Giller. 2002. The diversity of phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl. Environ. Microbiol. 68:4025-4034.   DOI
11 Ballard, R.A., N. Charman, A. McInnes, and J.A. Davidson. 2004. Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (Rhizobium leguminosarum bv. viciae) populations in South Australian soils. Soil Biol. Biochem. 36:1347-1355.   DOI
12 Campiglia, E., F. Caporali, E. Radicetti, and R. Mancinelli. 2010. Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur. J. Agron. 33:94-102.   DOI
13 Chemining'wa, G.N., and J.K. Vessey. 2006. The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol. Biochem. 38:294-302.   DOI
14 Cherr, C.M., J.M.S. Scholberg, and R, McSorley. 2006. Green Manure approaches to crop production: A synthesis. Agron. J. 98:302-319.   DOI
15 Kang, U.G., P. Somasegaran, H.J. Hoben, and B.B. Bohlool. 1991. Symbiotic potential, competitiveness, and serological properties of Bradyrhizobium japonicum indigenous to Korean soils. Appl. Environ. Microbiol. 57:1038-1045.
16 Choi, B.S., C.G. Kim, K.Y. Seong, D.Y. Song, W.T. Jeon, H.S. Cho, K.H. Jeong, and U.G. Kang. 2011. Change of weed community in no-till corn with legume cover crops as living much. Korean J. Weed. Sci. 31:34-40.   DOI
17 Clark, A.J., A.M. Decker, J.J. Meisinger, F.R. Mulford, and M.S. McIntosh. 1995. Hairy vetch kill date effects on soil water and corn production. Agron. J. 87:579-585.   DOI
18 Dastikaite, A, A. Sliesaravicius and N. Marsalkiene. 2009. Sensibility of two hairy vetch (Vicia villosa Roth) genotypes to soil acidity. Agron. Res. 7:233-238.
19 Kang, U.G., Y.T. Jung, S.K. Lee, and H.S. Ha. 1992. Rhizobium meliloti population and alfalfa yields due to nitrogen fertilization and inoculation methods at cultivated upland soil. Korean J. Soil Sci. Fert. 23:275-280.
20 Kaschuk, G., M. Hungria, D.S. Andrade, and R.J. Campo. 2006. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl. Soil Ecol. 32:210-220.   DOI
21 Kitou, M., G.Y. Jayasinghe, F. Nagumo, F. Anugroho, and K. Kinjo. 2010. Potential growth of hairy vetch as a winter legume cover crops in subtropical soil conditions. Soil Sci. Plant Nutr. 56:254-262.   DOI
22 Ku, J.H., M.T. Kim, W.T. Jeon, K.Y. Seong, H.S. Cho, C.G. Kim, U.G. Kang, Y.U Kwon, I.S. Choi, I.S. Oh, and T.S. Kim. 2014. A new hairy vetch (Vicia villosa Roth) variety, 'Cheongpoongbora' for green manure. Korean J. Breed. Sci. 46:318-322.   DOI
23 Maul, J., S. Mirsky, S. Emche, and T. Devine. 2011. Evaluating a germplasm collection of the cover crop hairy vetch for use in sustainable farming systems. Crop Sci. 51:2615-2625.   DOI
24 Laguerre, G., P. Louvrier, M.R. Allard, N. Amarger. 2003. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl. Environ. Microbiol. 69:2276-2283.   DOI
25 Lee, J.T., G.J. Lee, C.S. Park, S.W. Hwang, and Y.R. Yeoung. 2005. Effect of hairy vetch (Vicia villosa Roth) sod culture on reducing soil loss and providing nitrogen for Chinese cabbage in highland. Korean J. Soil Sci. Fert. 38:72-78.
26 Lima, A.S., R.S. Abrahao Nobrega, A. Barberi, K. da Silva, D.F. Ferreira, D.F., and F.M. de Souza Moreira. 2009. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant Soil 319:127-145.   DOI
27 Mischler, R., S.W. Duiker, W.S. Curran, and D. Wilson. 2010. Hairy vetch management for no-till organic corn production. Agron. J. 102:355-362.   DOI
28 Mothapo, N.V., J.M. Grossman, J.E. Maul, W. Shi, and T. Isleib. 2013. Genetic diversity of resident soil rhizobia isolated from nodules of distinct hairy vetch (Vicia villosa Roth) genotypes. Appl. Soil Ecol. 64:201-213.   DOI
29 Palmer, K.M. and J.P.W. Young. 2000. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl. Environ. Microbiol. 66:2445-2450.   DOI
30 Parr, M., J.M. Grossman, S.C. Reberg-Horton, C. Brinton, C. Crozier. 2011. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 103:1578-1590.   DOI
31 Seo, J.H., H.J. Kim, and S.J. Kim. 2000. Change of green manure and nitrogen yield of hairy vetch according to seeding date in autumn. Korean J. Crop Sci. 45:400-404.
32 RDA (Rural Development Administration). 2012. Cultivation and use of leguminous green manure crop. Chart 2 Hairy vetch. pp.29-84. Rural Development Administration. Suwon, Korea.
33 Rochester, I. and M. Peoples. 2005. Growing vetches (Vicia villosa Roth) in irrigated cotton systems: inputs of fixed N, N fertiliser savings and cotton productivity. Plant and Soil, 271:251-264.   DOI
34 Samson, R. 1990. Hairy vetch helps solve nitrogen problems with conservation tillage. Available at: https://www.reap-canada.com/online-library/Magazine%20Articles/Crops/17%20Hairy%20vetch.pdf. Accessed in Sept. 2017.
35 Tumbure, A, M. Wuta, and F. Mapanda. 2013. Preliminary evaluation of the effectiveness of Rhizobium leguminosarum bv. viceae strains in nodulating hairy vetch (Vicia villosa) in the sandy soils of Zimbabwe, S. Afr. J. Plant Soil 30:233-239.   DOI
36 Turk, D. and H.H. Keyser. 1993. Accuracy of most-probable-number estimates of rhizobia for tree legumes. Soil Biol. Biochem. 25:69-14.   DOI
37 Undersander, D.J., N.J. Ehlke, A.R. Kaminski, J.D. Doll, and K.A. Kelling. 1990. Hairy vetch. Alternative Field Crops Manual. University of Wisconsin-Madison and University of Minnesota. Available at: http://www.hort.purdue.edu/newcrop/afcm/vetch.html. Accessed in Sept. 2017.
38 USDA National Institute of Food and Agriculture. 2016. Hairy vetch for cover cropping in organic farming. Available at: http://articles.extension.org/pages/18570/hairy-vetch-for-cover-cropping-in-organic-farming. Accessed in Sept. 2017.
39 Vincent, J.M. 1970. A manual for the practical study of root nodule-bacteria. Blackwell Scientific Publication, Oxford.
40 Wagger, M.G. 1989. Cover crop management and nitrogen rate in relation to growth and yield of no-till corn. Agron. J. 81:533-538.   DOI
41 Woomer, P.L., P.W. Singleton, and B.B. Bohlool. 1988. Reliability of the most-probable-number technique for enumerating rhizobia in tropical soils. Appl. Environ. Microbiol. 54:1494-1497.
42 Yuan, K, H. Miwa, M. Iizuka, T. Yokoyama, Y. Fujii, and S. Okazaki. 2016. Genetic diversity and symbiotic phenotype of hairy vetch rhizobia in Japan. Microbes Environ. 31:121-126.   DOI
43 Zhang, X.X., B. Kosier, and U.B. Priefer. 2001. Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa. Mol. Ecol. 10:2297-2305.   DOI