• Title/Summary/Keyword: Up-Converter

Search Result 747, Processing Time 0.038 seconds

Analysis of Step-up AC/DC Converter (승압형 AC/DC 전력 변환기의 해석)

  • Park, S.Y.;Park, I.G.;Kang, Y.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.340-343
    • /
    • 1990
  • Recently, Power Electronics system increase makes harmonics and low input power factor problem. In this paper present new analysis method of PWM Boost AC/DC Converter. This PWM AC/DC Converter is capability of unity power factor, control of DC side voltage level, generation, and near sinusoidal current in 3-phase line. The control of this type of converter is widely discussed. And this paper propose new phase convert function and analysis in steady state of system to obtain amplitude and phaser of switching function. This switching function is general solution and it can use in high power approach. And this control method show the clear meaning of control variable. This paper propose new analysis method of Boost AC/DC Converter of steady state and 3-phase 2KW experimental system show its validity.

  • PDF

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

Co60 Gamma-Ray Effects on the DAC-7512E 12-Bit Serial Digital to Analog Converter for Space Power Applications

  • Shin, Goo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2065-2069
    • /
    • 2014
  • The DAC-7512E is a 12-bit digital to analog converter that is low power and a single package with internal buffers. The DAC-7512E takes up minimal PCB area for applications of space power electronics design. The spacecraft mass is a crucial point considering spacecraft launch into space. Therefore, we have performed a TID test for the DAC-7512E 12-bit serial input digital to analog converter to reduce the spacecraft mass by using a low-level Gamma-ray irradiator with $Co^{60}$ gamma-ray sources. The irradiation with $Co^{60}$ gamma-rays was carried out at doses from 0 krad to 100 krad to check the error status of the device in terms of current, voltage and bit error status during conversion. The DAC-7512E 12-bit serial digital to analog converter should work properly from 0 krad to 30 krad without any error.

Design and Analysis of Large Capacity Lithium Polymer Battery Charger for Hybrid Electrical Vehicle (HEV용 중대형 2차전지 충전기 설계 및 해석)

  • Oh Dong-Seob;Oh Sung-up;Seong Se-jin;Choi Jae-dong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.87-91
    • /
    • 2004
  • In this paper, the paralleled forward converter, that is generally used as the power supply for the low voltage, high current load, is described. The proposed forward converter for battery charging could be provided the power without failure not only in steady state but also in the transient period by the step load variation or the unexpected faults among the converter modules. Each converter nodule designed is operated alone with the self closed controller for the elevation of stability, performance, reliability, and maintainability. The frequency response of the designed converter module is analyzed, and the stability is confirmed in analytic method. And the experiments of the paralleled battery charger are carried out in steady state, in the step load variation.

  • PDF

Development of the Prototype of Wave Energy Converter by a Pulley System (도르래를 이용한 파력발전기 프로토 타입 개발에 관한 연구)

  • Jung, Hyun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • From the ancient times, there are waves in the ocean. And all the moving body have energy. We have a kind of hope to convert the wave energy into electric one. Finally we can find out a power generator mechanism that mainly use the principle of pulleys. We have made drawings for this and completed the wave energy converter. This wave energy converter consists of several pulleys, rope, generator, buoys and anchors. The distance between an anchor and buoy is changed according to the hight of waves. Several sets of anchors, pulleys and buoys can make the movement of rope, and the ropes wind up a converter axis. In case of 1 meter movement of the buoy, the winding distance will be amplified 2 or 3 times if we use several moving and fixed pulleys. Based on this concept, we developed 2 kind of prototypes. One is for the test in the laboratory and the other is for the field test. Through the two test, we could confirm the usability of this mechanism.

Compensating Characteristics of Voltage Sag Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Iimori, Kenichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • By using simulation, compensating characteristics of a voltage sag compensator utilizing single-phase matrix converter is examined. System configuration is described and mathematical model of single-phase matrix converter is derived by using the state space averaging method. In addition, the single-phase matrix converter is stabilized by phase-lead compensation. Finally, compensating characteristics of the compensator is investigated for 500 W R-L load and it is demonstrated that the compensator can operate correctly for loads for the range of power factor 0.6 (lagging) - 0.8 (leading) and for up to 50% voltage sag.

High Efficiency DC-DC Converter for Fuel Cell System (연료전지 계통 연계형 고효율 DC-DC 컨버터)

  • Oh, Eun-Tae;Yoon, Soo-Young;Lee, Yoon-Jae;You, Gwang-Min;Chae, Hyung-Jun;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2410-2415
    • /
    • 2009
  • Studying for environmental friendly and efficient energy source is now actively under way on because problems like environmental pollution and exhaust of natural resources are in issue. Fuel Cell which is an alternative energy source has low voltage and high current characteristic, therefore boost up voltage converter and DC-AC converter is required to use as a common power source. In this paper, DC-DC converter which has high efficient and high power density is proposed and verified by experimental result.

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

Fuel Cell Generation System Combined Interleaved Full-bridge Converter with Half-bridge Inverter (인터리브드 풀브릿지 컨버터와 하프브릿지 인버터를 결합한 연료전지 발전 시스템)

  • Kim, Heon-Hee;Lee, Hee-Jun;Shin, Soo-Chul;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.518-519
    • /
    • 2012
  • This paper suggested a fuel cell generation system which combined interleaved full-bridge converter with half-bridge inverter. High ratio step-up converter is essential to use the power as general voltage source. Full-bridge converter has high efficiency and can boost the input voltage to high output with transformer. With series connected capacitors, interleaved full-bridge converter and half-bridge inverter are combined. Half-bridge inverter has two fewer switches compared to full-bridge type. Also, switching loss can be reduced. The performance is verified through simulation with 1.5[kW] fuel cell generation system.

  • PDF