• Title/Summary/Keyword: Untranslated Region

Search Result 180, Processing Time 0.024 seconds

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Construction of Complementary DNA Library and cDNA Cloning for Cy Strain of Odontoglossum Ringspot Virus Genomic RNA (오돈토글로썸 윤문 바이러스 Cy계통 게놈 RNA의 cDNA 구축 및 유전자 크로닝)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 1994
  • Genomic RNA was extracted from Cy strain of odontoglossum ringspot tobamovirus (ORSV-Cy) isolated from infected leaves of tobacco cv. Samsun. Size of the genomic RNA was about 6.6 kb in length. The genomic RNA was fractionated using Sephadex G-50 column chromatography into 2 fractions. They were polyadenylated at their 3'-end using E. coli poly(A) polymerase. Polyadenylated viral RNA was recovered by oligo (dT) primer adapter containing NotI restriction site and Moloney murine leukemia virus SuperScript reverse transcriptase (RNase H-). Second-strand cDNA was synthesized by using E. coli DNA ligase, E. coli DNA polymerase I and E. coli RNase H. Recombinant plasmids containing cDNAs for ORSV-Cy RNA ranged from about 800 bp to 3,000 bp. Among the selected 238 recombinants, pORCY-124 clone was the largest one covering 3'-terminal half of the viral RNA. This clone contained two restriction sites for EcoRI and XbaI and one site for AccI, AvaI, BglII, BstXI, HindIII, PstI, and TthIII 1. respectively. The clone contained partial viral replicase, a full-length movement protein and a complete coat protein genes followed by a 3' untranslated region of 414 nucleotides based on restriction mapping and nucleotide sequencing analyses. Clones pORCY-028, -068, -072, -187 and -224 were overlapped with the pORCY-124. Clones pORCY-014 and -095 covered 5' half upstream from the middle region of the viral RNA, which was estimated based on restriction mapping and partial sequence analysis. Constructed cDNA library covered more than 90% of the viral genome.

  • PDF

Expression Patterns and Isolation of Genomic DNA of a Metallothionein-like Gene from Citrus (Citrus unshiu Marc. cv. Miyagawa) (감귤에서 분리한 Metallothionein 유전자의 발현분석 및 게놈 DNA)

  • 김인중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • A cDNA clone encoding metallothionein-like protein (CitMT45), which was reported by Moriguchi et al. (1998), was isolated from Citrus fruits cDNA library through differential screening. Our cDNA clone has longer 5'untranslated region, compared to it isolated by Moriguchi et al. (1998). RNA blot analysis showed that the mRNA was abundant in fleshes than peels, leaves, and flowers, as a single transcript. However, regardless of tissue types, the blots showed the similar expression patterns in the process of development with some different profile. These results suggest that CitMT45 may play important roles in the development and/or senescence of various tissues of Citrus. A genomic clone corresponding to CitMT45 was isolated and found to have three exons and two introns. A primer extension analysis suggested that the transcription of CitMT45 gene was started at three start sites with different degrees. The 5'-flanking region was shown to contain a putative metal regulatory element (MRE) and low- temperature responsive element which suggests the possibility of metal-and cold-regulated transcription, respectively.

  • PDF

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Molecular Cloning and Alternative Splicing of Growth Hormone Transcripts in Greenling, Hexagrammos otakii (쥐노래미 (Hexagrammos otakii) 성장호르몬 cDNA유전자의 염기서열 변이 및 발현 특성)

  • Nam Yoon Kwon;Kim Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.676-681
    • /
    • 2002
  • Different types of transcripts encoding growth hormone (GH) were identified from cDNA libraries constructed with pituitaries of a marine fish species, greenling (Hexagrammos otakii). GH-homologous cDNA clones were isolated using the high-density filter hybridization and the expressed sequence tag techniques. Of 39 full-length positive cDNA clones, 31 clones ($79\%$) displayed an identical sequence, however, remaining 8 clones exhibited several polymorphisms in their sequences including (1) the length and sequence variability in the 5' upstream region, (2) insertional sequences in open reading frame, and (3) deletion and/or single nucleotide polymorphism in the untranslated 3' region. Based on RT-PCT and RNA dot blot analyses, these transcripts were proven to be expressed in a pituitary-specific manner.

Genetic analysis of the postsynaptic transmembrane X-linked neuroligin 3 gene in autism

  • Hegde, Rajat;Hegde, Smita;Kulkarni, Suyamindra S.;Pandurangi, Aditya;Gai, Pramod B.;Das, Kusal K.
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2021
  • Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.

Molecular Cloning of the 3'-Terminal Region of Garlic Potyviruses and Immunological Detection of Their Coat Proteins

  • Song, Sang-Ik;Song, Jong-Tae;Chang, Moo-Ung;Lee, Jong-Seob;Park, Yang-Do
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.270-279
    • /
    • 1999
  • cDNAs complementary to the 3'-terminal regions of two potyvirus genomes were cloned and sequenced. The clone G7 contains one open reading frame (ORF) of 1,338 nucleotides and a 3' untranslated region (3'-UTR) of 403 nucleotides at the 3'-end excluding the 3'end poly(A) tail. The putative viral coat protein (CP) shows 55%-92% amino acid sequence homology to those of Allium potyviruses. The genome size of the virus was analyzed to be about 9.0 kb by Northern blot analysis. Five cDNA clones were screened out using GPV2 oligonucleotide as a probe. One of these clones, DEA72, which has a longest cDNA insert, contains one ORF of 1,459 nucleotides and a 3'-UTR of 590 nucleotides at the 3'-end excluding the 3'-end poly(A) tail. The putative viral CP shows 57%-88% amino acid sequence homologies to those of Allium potyviruses. The genome size of the virus was analyzed to be about 9.6 kb by Northern blot analysis. The results of immunoblot and Northern blot analyses suggest that almost all of the tested garlic plants showing mosaic or streak symptoms are infected with DEA72-potyvirus in variable degrees but rarely infected with G7-potyvirus in variable degrees but rarely infected with DEA72-potyvirus in variable degrees but rarely infected with G7-potyvirus. Immunoelectron microscopy using anti-DEA72 CP antibody shows that this potyvirus is about 750 nm long and flexuous rod shaped.

  • PDF

Human Parechovirus as an Important Cause of Central Nervous System Infection in Childhood (소아청소년기 중추신경 감염의 주요 원인으로서 Human Parechovirus의 의의)

  • Jung, Hyun Joo;Choi, Eun Hwa;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.23 no.3
    • /
    • pp.165-171
    • /
    • 2016
  • Purpose: Human parechovirus (HPeV) is an increasingly recognized pathogenic cause of central nervous system (CNS) infection in neonates. However, HPeV infections have not been studied in older children. This study determined the prevalence and clinical features of HPeV CNS infection in children in Korea. Methods: Reverse transcription polymerase chain reaction assays were performed using HPeV-specific, 5' untranslated, region-targeted primers to detect HPeV in cerebrospinal fluid (CSF) samples from children presenting with fever or neurologic symptoms from January 1, 2013, to July 31, 2014. HPeV genotyping was performed by sequencing the viral protein 3/1 region. Clinical and laboratory data were retrospectively abstracted from medical records and compared with those of enterovirus (EV)-positive patients from the same period. Results: Of 102 CSF samples, six (5.9%) were positive for HPeV; two of 21 EV-positive samples were co-infected with HPeV. All samples were genotype HPeV3. Two HPeV-positive patients were <3 months of age and four others were over 1 year old. While HPeV-positive infants under 1 year of age presented with sepsis-like illness without definite neurologic abnormalities, HPeV-positive children over 1 year of age presented with fever and neurologic symptoms such as seizures, loss of consciousness, and gait disturbance. The CSF findings of HPeV-positive patients were mostly within the normal range, whereas most (73.7%) EV-positive patients had pleocytosis. Conclusions: Although HPeV is typically associated with disease in young infants, the results of this study suggest that HPeV is an emerging pathogen of CNS infection with neurologic symptoms in older childhood.

Molecular diagnosis of fragile X syndrome in a female child (여아 환자에서의 취약 X 증후군의 분자유전학적 진단)

  • Jeong, Seon-Yong;Yang, Jeong-A;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Purpose : Fragile X syndrome (FXS) is the most common heritable cause of cognitive impairment. FXS is caused by hyperexpansion and hypermethylation of a polymorphic CGG trinucleotide repeat in the 5' untranslated region of the fragile X mental retadation-1(FMR1) gene. Combination of Southern blotting and simple polymerase chain reaction(PCR) amplification of the FMR1 repeat region is commonly used for diagnosis in females. To give a definite diagnosis in a female child suspected of having FXS, we carried out the molecular diagnostic test for FXS using the recently developed Abbott Molecular Fragile X PCR Kit. Methods : The PCR amplification of the FMR1 repeat region was performed using the Abbott Mdecular Fragile X PCR Kit. The amplified products were analyzed by size-separate analysis on 1.5% agarose gels and by DNA fragment analysis using Gene scan. Results : Agarose gel and Gene scan analyses of PCR products of the FMR1 repeat region showed that the patient had two heterozygous alleles with a normal 30 repeats and full mutation of >200 repeats whereas her mother had two heterozygous alleles with the normal 30 repeats and premutation of 108 repeats, suggesting that the premutation of 108 repeats in her mother may have led to the full mutation of >200 repeats in the patient. Conclusion : We diagnosed FXS in a female patient using a simplified molecular diagnostic test. This commercially available diagnostic test for FXS, based on PCR, may be a suitable alternative or complement method to Southern blot analysis and PCR analysis and/or methylation specific(MS)-PCR analysis for the molecular diagnosis of FXS in both males and females.

  • PDF

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.