• 제목/요약/키워드: Unsupervised Approach

검색결과 140건 처리시간 0.028초

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

비지도학습 기반의 뎁스 추정을 위한 지식 증류 기법 (Knowledge Distillation for Unsupervised Depth Estimation)

  • 송지민;이상준
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.209-215
    • /
    • 2022
  • This paper proposes a novel approach for training an unsupervised depth estimation algorithm. The objective of unsupervised depth estimation is to estimate pixel-wise distances from camera without external supervision. While most previous works focus on model architectures, loss functions, and masking methods for considering dynamic objects, this paper focuses on the training framework to effectively use depth cue. The main loss function of unsupervised depth estimation algorithms is known as the photometric error. In this paper, we claim that direct depth cue is more effective than the photometric error. To obtain the direct depth cue, we adopt the technique of knowledge distillation which is a teacher-student learning framework. We train a teacher network based on a previous unsupervised method, and its depth predictions are utilized as pseudo labels. The pseudo labels are employed to train a student network. In experiments, our proposed algorithm shows a comparable performance with the state-of-the-art algorithm, and we demonstrate that our teacher-student framework is effective in the problem of unsupervised depth estimation.

Unsupervised Segmentation of Images Based on Shuffled Frog-Leaping Algorithm

  • Tehami, Amel;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.370-384
    • /
    • 2017
  • The image segmentation is the most important operation in an image processing system. It is located at the joint between the processing and analysis of the images. Unsupervised segmentation aims to automatically separate the image into natural clusters. However, because of its complexity several methods have been proposed, specifically methods of optimization. In our work we are interested to the technique SFLA (Shuffled Frog-Leaping Algorithm). It's a memetic meta-heuristic algorithm that is based on frog populations in nature searching for food. This paper proposes a new approach of unsupervised image segmentation based on SFLA method. It is implemented and applied to different types of images. To validate the performances of our approach, we performed experiments which were compared to the method of K-means.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

자연스러운 저조도 영상 개선을 위한 비지도 학습 (Unsupervised Learning with Natural Low-light Image Enhancement)

  • 이헌상;손광훈;민동보
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.135-145
    • /
    • 2020
  • Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.

Unsupervised feature learning for classification

  • Abdullaev, Mamur;Alikhanov, Jumabek;Ko, Seunghyun;Jo, Geun Sik
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.51-54
    • /
    • 2016
  • In computer vision especially in image processing, it has become popular to apply deep convolutional networks for supervised learning. Convolutional networks have shown a state of the art results in classification, object recognition, detection as well as semantic segmentation. However, supervised learning has two major disadvantages. One is it requires huge amount of labeled data to get high accuracy, the second one is to train so much data takes quite a bit long time. On the other hand, unsupervised learning can handle these problems more cheaper way. In this paper we show efficient way to learn features for classification in an unsupervised way. The network trained layer-wise, used backpropagation and our network learns features from unlabeled data. Our approach shows better results on Caltech-256 and STL-10 dataset.

  • PDF

퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류 (Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권4호
    • /
    • pp.329-339
    • /
    • 2003
  • 본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

Unsupervised segmentation of Multi -Source Remotely Sensed images using Binary Decision Trees and Canonical Transform

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.4-23
    • /
    • 2001
  • This paper proposes a new approach to unsupervised classification of remotely sensed images. Fusion of optic images (Landsat TM) and radar data (SAR) has beer used to increase the accuracy of classification. Number of clusters is estimated using generalized Dunns measure. Performance of the proposed method is best observed comparing the classified images with classified aerial images.

  • PDF

원격탐사 자료를 이용한 하와이 해안지역 식생 분류 (Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data)

  • 박선엽
    • 한국지역지리학회지
    • /
    • 제12권4호
    • /
    • pp.496-507
    • /
    • 2006
  • 본 연구는 고해상도 자료와 하이퍼스펙트럴 자료를 혼용하여 하와이 화산 국립공원 내 해안 지역의 식생을 분류하고자 하였다. 연구지역에 주로 나타나는 식생은 3종의 초본(broomsedge, natal redtop, and pili)과 작은 관목 등으로 대표되는 비초본으로 구분된다. 분류 기법으로는 unsupervised classification과 supervised classification을 결합한 하이브리드법을 이용하여 전체적으로 3단계 분류과정을 적용하였다. 첫째로는, IKONOS 고해상 위성자료를 이용하여, 식생 및 비식생지역을 unsupervised classification법을 통해 분류하였다. 두 번째로는, minimum noise fraction(MNF) transformation을 이용하여 AVIRIS하이퍼스펙트럴 자료로부터 주성분을 추출하여 자료를 압축하는 과정을 거쳤다. 20미터 해상도를 가진 AVIRIS 픽셀들은 대부분 용암면과 식생면으로부터 반사된 복사신호가 혼합되어 있기때문에, 용암과 식생의 지표피복 비율에 따른 선형모형을 적용하여 용암면이 갖는 반사 신호를 각 픽셀로부터 제거하였다. 최종적으로, 각 픽셀에 대하여, 식생피복 비율에 비례하는 AVIRIS 하이퍼스펙트럴 자료의 식생성분을 토대로 maximum likelihood algorithm에 따라 supervised classification법을 적용하여 초지 및 관목으로 대표되는 지표식생을 분류하였다.

  • PDF