• 제목/요약/키워드: Unstructured data analysis

검색결과 428건 처리시간 0.026초

암환자 가족의 죽음 태도 유형에 관한 연구 (A Classification of Death Orientation of Cancer Patient's Family Members : A Q-Methodological Approach)

  • 박창승;김순자
    • 기본간호학회지
    • /
    • 제3권2호
    • /
    • pp.153-169
    • /
    • 1996
  • This study was designed to identify, describe and classify orientations of cancer patient's family members to death and to identify factors related to their attitudes on death. Death to the male is understood as a comprehensive system and believed to be highly subjective experience. Therefore attitude on death is affected by personalities. As an attempt to measure the subjective meaning toward death, the unstructured Q-methodology was used. Korean Death Orientation Questonaire prepared by Kim was used. Item-reliability and Sorting-reliability were tested. Forty five cancer patients' family members hospitalized in one university medical center in Seoul were sampled. Sorting the 65 Q-itmes according to the level of personal agreement ; A forced normal distribution into the 11 levels, were carried out by the 45 P-samples. The demographic data and information related to death orientation of the P-sample was collected through face to face in depth interviews. Data was gathered from August 30 till September 22, 1995. The Z-scores of the Q-items were computed and principal component factor analysis was carried out by PC-QUANL Program. Three unique types of the death orientation were identified and labeled. Type I consists of twenty P-samples. Life and death was accepted as people's destiny, They firmly believed the existence of life after life. They kept aloof from death and their concern was facing the and of the life with dignity, They were in favor of organ donation. Type II consists of Nine P-Samples. They considered that death was the end of everything and did not believed the life after life. They were very concerned about the present life. Type III consists of Sixteen P-samples. They regarded the death as a natural phenomena. And they considered that the man is just a traveller and is bound to head for the next life which is believed to be free of agony, pain or darkness. They neither feared death nor its process. Their conserns were on the activities to prepare themselves for the eternal-life after death. Thus, it was concluded that there were three distinctiven type of attitudes on death among cancer patient family members, and their death attitudes were affected by demographic and socio-cultural factors such as sex, education, and religion.

  • PDF

포토보이스를 활용한 베이비부머 은퇴자의 죽음준비 인식의 연구 (Using Photovoice A Study on the Perception of Death Readiness in Babyboomer Retirees)

  • 정주영;이미란
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.171-177
    • /
    • 2022
  • 한국 베이비부머 세대의 은퇴는 대량의 인구가 중년층에서 벗어나 노년층으로 들어서게 되면서 고령화 사회의 주요인이 되었다. 또한 30년 이상 구조화된 직장에서 바쁘게 일을 하다 은퇴 후 비구조화 된 환경에 적응하지 못해 우울감을 가지며 자살의 위험 등 사회적 문제로까지 이어지게 되었으며, 이러한 사회적 문제의 해결 및 예방적 차원의 정책적 검토를 위한 연구가 필요하였다. 본 연구는 죽음에 이르기까지 준비된 삶을 살고자 하는 은퇴자들의 죽음준비에 대한 인식은 어떠한가 라는 연구문제를 포토보이스를 활용하여 심층 탐구하였고, 은퇴자들의 노년기 죽음준비에 대한 사회복지 정책적 제언을 하고자 함이 본 연구의 목적이다. 연구 참여자는 베이비부머 은퇴자 7명이며, 자료는 2개월 동안 수집하였고, 직접 촬영한 사진과 설명과 심층면담 내용을 주제 분석법으로 분석한 결과 도출된 인식은 순리로 받아들이는 죽음을 맞이하며 준비하기 위한 교육의 필요성이었다. 본 연구의 논의에서 베이비부머 은퇴자들을 도울 수 있는 죽음준비 교육프로그램 개발이 시급하며, 프로그램을 담당할 지역 기관의 협력이 필요함을 제안하고자 한다. 본 연구는 베이비부머 은퇴자의 죽음준비의 인식을 통한 은퇴 이후 노년을 위한 사회복지 정책적 방안을 마련함에 있어 기초자료를 제시한 점에서 그 의의가 있다.

생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용 (Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models)

  • 김수아;권미주;김현희
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.209-216
    • /
    • 2024
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 텍스트 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있으므로 부동산 매매 가격 예측에 있어 중요한 요인이다. 본 연구에서는 뉴스 기사를 감성 분석하여 그 결과를 뉴스 감성 지수로 점수화 한 후 부동산 가격 예측 모델에 적용하였다. 먼저 기사 본문을 요약 후 요약된 내용을 바탕으로 생성 AI를 활용하여 긍정, 부정, 중립으로 분류한 다음 총 점수를 산출하였고 이를 부동산 가격 예측 모델에 적용하였다. 부동산 가격 예측 모델로는 Multi-head attention LSTM 모델과 Vector Auto Regression 모델을 사용하였다. 제안하는 뉴스 감성 지수를 적용하지 않은 LSTM 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 0.60, 0.872, 1.117의 Root Mean Square Error (RMSE)을 보였으며, 뉴스 감성 지수를 적용한 LSTM 예측 모델은 각각 0.40, 0.724, 1.03의 RMSE값을 나타낸다. 또한 뉴스 감성 지수를 적용하지 않은 Vector Auto Regression 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 1.6484, 0.6254, 0.9220, 뉴스 감성 지수를 적용한 Vector Auto Regression 예측 모델은 각각 1.1315, 0.3413, 1.6227의 RMSE 값을 나타낸다. 앞선 아파트 매매가격지수 예측 모델을 통해 사회/경제적 동향을 반영한 부동산 시장 가격 변동을 예측할 수 있을 것으로 보인다.

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.

데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석 (The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining)

  • 이수현;박정민;이형용
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.111-131
    • /
    • 2015
  • 본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.

고등학생의 건강 및 삶의 질에 대한 진단적 연구 - PRECEDE 모형을 근간으로 - (A Diagnostic Study on High School Students' Health and Quality of Life - Based on the PRECEDE model -)

  • 유재순;홍여신
    • 한국간호교육학회지
    • /
    • 제3권
    • /
    • pp.78-98
    • /
    • 1997
  • Health education, as the most fundamental concept for national health promotion, alms for developing the self-care ability of the general public. High school days are regarded as the period when most important physical, mental and social developments occur, and most health-related behaviors are formed. School health education is one of the major learning resources influencing health potential in the home and community as well as for the individual student. High school health education in Korea has a fundamental systemic flaw in that health-related subjects are divided and taught under various subjects areas at school. In order to achieve the goal of school health education, it is essential to make a systematic assessment of the learner's concerns connected with his health and life, and the factors affecting them. So far, most of the research projects that had been carried out for improving high school health education were limited in their concerns to a particular aspect of health. Even though some had been done in view of comprehensive school health education, they failed to Include a health assessment of the learner. Therefore, in this study the high school students' concerns related to health and life were investigated in the first place on the basis of the PRECEDE model, developed by Green and others for the purpose of a comprehensive diagnostic research on high school health education. This study was done in two steps : one was the basic study for developing research instrument and the other was the main one. The former was conducted at five high schools in Seoul and Cheongju for 2 months-beginning in March, 1996. The students were asked to respond to questions related to their health and lives in unstructured open-ended question forms. On the basis of analysis of the basic study, the diagnostic instruments for the quality of life, health problems, health behavior and educational factors were constructed to be used for the collection of data for main study. An expert panel and the pilot study were used to improve content validity and reliability of the instruments. The reliability of the instruments was measured at between .7697 and .9611 by the Cronbach $\alpha$. The data for this study were collected from the sample consisted of the junior and senior classes of twenty general and vocational high schools in Seoul and Cheongju for two months period beginning in July, 1996. In analyzing the data, both t-test and $X^2$-test were done by using SAS-$PC^+$ Program to compare data between the sexes of the high school students and the types of high school. A canonical correlation analysis was carried out to determine the relationships among the diagnostic variables, and a multivariate multiple regression analysis was conducted by using LISREL 8.03 to ascertain the influences of variables on the high school students' health and quality of life. The results were as follows : 1) The findings of the hypothesis tests (1) The canonical correlation between the educational diagnosis variables and behavioral, epidemiological, social diagnosis variables was .7221, which was significant at the level of p<.001. (2) The canonical correlation between the educational diagnosis variables and the behavior variables was .6851, which also was significant (p<.001). (3) The canonical correlation between the behavioral diagnosis variables and the epidemiological variables was 4295, which was significant (p<.001). (4) The canonical correlation between the epidemiological diagnosis variables and the social variables was .6005, which was also significant (p<.001). Therefore, the relationship between each diagnosis variable suggested by the PRECEDE model had been experimentally proven to be valid, supporting the conceptual framework of the study as appropriate for assessing the multi-dimensional factors affecting high school students' health and quality of life. Health behavior self-efficacy, the level of parents' interest and knowledge of health, and the level of the perception of school health education, all of which are the educational diagnostic variables, are the most influential variables in students' health and quality of life. In particular, health behavior self-efficacy, a causative factor, was one of the main influential variables in their health and quality of life. Other diagnostic variables suggested in the steps of the PRECEDE model were found to have reciprocal relations rather than a unidirectional causative relationship. The significance of this research is that it has diagnosed the needs of high school health education by the learner-centered assessment of variety of factors related to the health and the life of the students. This research findings suggest an integrated system of school health education to be contrived to enhance the effectiveness of the education by strengthening the influential factors such as self-efficacy to improve the health and quality of the lives of high school students.

  • PDF

K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로 (Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai)

  • 류미나;임규건
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.197-218
    • /
    • 2019
  • 중국 화장품 전체 교역중 약 67% 정도가 전자상거래로 이루어지고 있는데 특히 한국 화장품인 K-Beauty 제품의 인기가 높다. 기존 연구에 의하면 화장품 같은 소비재의 경우 소비자의 80%는 제품 구매 전 제품정보를 인터넷으로 검색하며 구전정보에 영향을 받는다. 대부분의 중국 소비자들은 화장품과 관련된 정보를 주요 SNS에 다른 소비자들이 올린 댓글을 통해 획득하며 최근에는 뷰티 관련 동영상 채널 정보를 이용하기도 한다. 기존의 온라인 구전 관련 연구는 대부분 Facebook, Twitter, 블로그 등의 매체 자체가 중심이었다. 본 연구에서는 온라인 구전정보의 전달 형태와 정보의 형태를 고려하여 정보유형을 동영상과 사진 및 텍스트로 나누어 연구하고자 한다. 중국의 SNS대표 플랫폼인 SINA Weibo와 동영상 플랫폼 Meipai의 비정형 데이터를 분석하고 온라인 구전정보를 양과 방향성으로 나누어 K-Beauty브랜드 매출액에 미치는 영향을 분석하고자 한다. Meipai에서는 총 약 33만개의 데이터를 수집하였고 SINA Weibo에서는 총 약 11만개의 데이터를 수집하여 화장품의 기본 속성도 고려하여 분석하였다. 본 연구의 의의는 온라인 매출은 K-Beauty화장품에 대해서도 구전에 영향을 받는다는 것을 기본적으로 입증함과 동시에 특히 정보 유형에 대한 구분을 시도 했다는 것이다. 두가지 매체 모두 기존 연구와 같이 양이 매출에 영향을 미치고 있으나 매체풍부성으로 인해 텍스트보다 동영상이 정보를 더 주고 영향이 크다는 것을 입증하였다. 또한, 정보 방향성 측면에서는 색조화장품의 경우 부정 댓글의 영향이 크게 나타났다. 실무적으로는 화장품 판매 전략 및 광고 전략에 기초 및 색조 화장품을 구분하여 중국 K-Beauty화장품 매출증대를 위한 마케팅전략을 구사하는데 도움이 될 것으로 기대된다.

사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구 (An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining)

  • 이형일;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.47-73
    • /
    • 2020
  • KTX 차량은 수많은 기계, 전기 장치 및 부품들로 구성되어 있는 하나의 시스템으로 차량의 유지보수에는 상당히 많은 전문성과 유지보수 작업자들의 경험을 필요로 한다. 차량 고장발생 시 유지보수자의 지식과 경험에 따라 문제 해결의 시간과 작업의 질적 차이가 발생하며 그에 따른 차량의 가용율이 달라진다. 일반적으로 문제해결은 고장 매뉴얼을 기반으로 하지만 경험이 많고 능숙한 전문가의 경우는 이와 더불어 개인의 노하우를 접목하여 신속하게 진단하고 조치를 취한다. 이러한 지식은 암묵지 형태로 존재하기 때문에 후임자에게 완전히 전수되기 어려우며, 이를 위해 사례기반의 철도차량 전문가시스템을 개발하여 데이터화된 지식으로 바꾸려고 하는 연구들이 있어왔다. 하지만, 간선에 가장 많이 투입되고 있는 KTX 차량에 대한 연구나 텍스트의 특징을 추출하여 유사사례를 검색하는 시스템 개발은 아직 미비하다. 따라서, 본 연구에서는 이러한 차량 유지보수 전문가들의 노하우를 통해 수행된 고장들에 대한 진단과 조치 이력을 문제 해결의 사례로 활용하여 새롭게 발생하는 고장에 대한 조치가이드를 제공하는 지능형 조치지원시스템을 제안하고자 한다. 이를 위하여, 2015년부터 2017년동안 생성된 차량고장 데이터를 수집하여 사례베이스를 구축하였고, 차원축소 기법인 비음수 행렬 인수분해(NMF), 잠재의미분석(LSA), Doc2Vec을 통해 고장의 특징을 추출하여 벡터 간의 코사인 거리를 측정하는 방식으로 유사 사례를 검색하였으며, 위의 알고리즘에 의해 제안된 조치내역들 간 성능을 비교하였다. 분석결과, 고장 내역의 키워드가 적은 경우의 유사 사례 검색과 조치 제안은 코사인 유사도를 직접 적용하는 경우에도 좋은 성능을 낸다는 것을 알 수 있었고 차원 축소 기법들의 성능 비교를 통해 문맥적 의미를 보존하는 차원 축소 방식 중 Doc2Vec을 적용하는 것이 가장 좋은 성능을 나타낸다는 것을 알 수 있었다. 텍스트 마이닝 기술은 여러 분야에서 활용을 위한 연구들이 이루어지고 있는 추세이나, 본 연구에서 활용하고자 하는 분야처럼 전문적인 용어들이 다수이고 데이터에 대한 접근이 제한적인 환경에서 이러한 텍스트 데이터를 활용한 연구는 아직 부족한 실정이다. 본 연구는 이러한 관점에서 키워드 기반의 사례 검색을 보완하고자 텍스트 마이닝 기법을 접목하여 고장의 특징을 추출하는 방식으로 사례를 검색해 조치를 제안하는 지능형 진단시스템을 제시하였다는 데에 의의가 있다. 이를 통해 현장에서 바로 사용 가능한 진단시스템을 단계적으로 개발하는데 기초자료로써 시사점을 제공할 수 있을 것으로 기대한다.

5일 금연학교의 장기적 효과에 관한 연구 (Long-term Effect of the 5-Day Stop-Smoking School)

  • 김선애
    • 한국보건간호학회지
    • /
    • 제12권1호
    • /
    • pp.103-115
    • /
    • 1998
  • As the studies that smoking can be a major cause to various diseases have been made, many following researches on the outcome of stop-smoking education were in progress. Even though researches based on the knowledge about smoking and status about the teenagers were prevalent, the research based on the outcomes in long time basis were not in progress. Therefore, I tracked the people who went through 5-Day Stop-Smoking School that has taught through complexed structure of behavioral, intellectual, and psychological education. I made researches on the average of success and the hardest point during their efforts to stop just to show the necessity of going through re-education. The objectives of this study were the ones who have completed the education on the years 1990, 1991. 47 were selected from 364 people that completed the training, and who were able to be contacted on the phone line. This study was conducted from 27 Oct. to 7 Nov. 1997 through verbal interviews based on the questionnaire. The questionnaire used here was made by myself, assisted by my professor. Analysis was made through unstructured open questions. The data was analyzed using SPSS program. The major results were as follows ; 1) General characteristics of the objectives are $97.0\%$ were male, $17\%$ ages below 40s, $34\%$ in the age group of 40s, and $48.9\%$ over 50s. Religiously christian 340/0, buddhist $19.1\%$, no religion or any other reason $46.8\%$. Status married $93.6\%$, unmarried $6.4\%$. There is someone smoking in the family $36.2\%$, no one smokes $63.8\%$. Reputation salary men $55.3\%$, personal business $27.7\%$. 2) The average of success is $42.6\%(20/47)$, the failure is $57.4\%$. 3) The results from the study 'When was the hardest point in the process of stop smoking' : For the successors the first week $33.3\%$, after the first week $66.7\%$. For the failures the first week $55\%$, after first week $45\%$(Statistics not precisely done), the most effective element that helped through the hardest point was the family $40\%$, personal determination $30\%$. 4) The necessity of re-education : Successors needed $55\%$, not needed $45\%$. Failures needed $48.1\%$, not needed $51.9\%$(Statistics not precisely done). The perfect time for reeducation : Successors in 6 months $50\%$, irregular time basis $50\%$. Failures in six months $36.4\%$, after six months $27.3\%$, irregular time basis $36.4\%$(Statistics not precisely done). Synthesizing the result of the study can't generalize the long-term effect of the stop-smoking due to the number of the objectives,. but recognize the fact that 47.6 have experienced success, and also the self-determination and the support from the family are desirable. Seeing the fact that both are great motivation to stop smoking. Since the first week is necessary. The necessity of re-education is rather high, so this education should be planned to be done repeatedly in a long term along with close observation, instead of short education.

  • PDF

텍스트 마이닝 기반의 이슈 관련 R&D 키워드 패키징 방법론 (Methodology for Issue-related R&D Keywords Packaging Using Text Mining)

  • 현윤진;윌리엄;김남규
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.57-66
    • /
    • 2015
  • 빅데이터 기술에 대한 관심이 급증함에 따라, 소셜 미디어를 통해 유통되는 방대한 양의 비정형 데이터를 분석하고자 하는 시도가 활발히 이루어지고 있다. 이에 따라서 텍스트 형태의 비정형 데이터 분석을 통해 의미 있는 정보를 찾고자 하는 시도가 비즈니스 영역뿐 아니라, 정치, 경제, 문화 등 다양한 영역에서 이루어지고 있다. 특히 최근에는 여러 현안 및 이슈들을 발굴하여 이를 의사결정에 활용하고자 하는 시도가 활발히 이루어지고 있다. 이처럼 빅데이터 분석을 통해 국가현안이나 이슈를 발굴하고자 하는 시도가 꾸준히 이루어져왔음에도 불구하고, 국가현안 및 이슈로부터 이와 관련된 R&D 문서를 효율적으로 제공하는 방안은 마련되지 않고있다. 이는 사용자들이 인식하는 현안 키워드와 실제 사용되는 R&D 키워드 사이의 이질성이 존재하기 때문이다. 따라서 현안 및 R&D키워드간의 이질성을 극복하기 위한 중간 장치가 필요하며, 이 중간 장치를 통해 각 현안 키워드와 R&D 키워드간에 적절한 대응이 이루어져야 한다. 이를 위해 본 연구에서는 (1) 현안 키워드 추출을 위한 하이브리드 방법론, (2) 현안 대응 R&D 정보 패키징 방법론, 그리고 (3) R&D 관점에서의 연관 현안 네트워크 구축 방법론의 총 세 가지 방법론을 제안한다. 제안하는 방법론은 텍스트 마이닝, 소셜네트워크 분석, 그리고 연관 규칙 마이닝 등의 데이터 분석 기법들을 활용하여 수행하였으며, 그 결과, (1)에 의한 키워드 보강률은 42.8%로 나타났으며, (2)의 경우, 현안 키워드와 R&D 키워드간 다수의 연관 규칙이 나타났다. (3)의 경우는 현재 진행 중에 있으며, 향후 가시적 성과를 낼 수 있을 것으로 예상된다.