• 제목/요약/키워드: Unstructured Grid)

검색결과 225건 처리시간 0.024초

부유체 주위의 2차원 회절 문제를 위한 내율적 비정렬 격자 유한요소해법 (An Implicit Unstructured Finite Element Method for Diffraction of Water Waves by Two-Dimensional Floating Breakwaters)

  • 정구창
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.90-101
    • /
    • 1997
  • A hybrid element method is presented for two-dimensional diffraction problem of water waves. In this method, only a limited fluid domain close to irregular bodies is discretized into conventional finite elements, while the remaining infinite domain is treated as one element with analytical representations of high accuracy. A finite element grid is automatically generated by using Dealunay triangulation based on the Bowyer's algorithm and a linear system of equations is approximately solved with the ILU-CGS algorithm. To validate the present scheme, Computational results are compared with the existing experimental data and other numerical solutions.

  • PDF

한 쌍의 실린더를 가지는 점성구동 마이크로 펌프의 성능 해석 (Performance Analysis of the Viscous-driven Micropump with Tandem Rotating Cylinders)

  • 최형일;조성찬;맹주성
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1256-1261
    • /
    • 2003
  • Since the viscous effect increases as the size of device decreases, viscous-driven micropump is a promising mechanism in microscale applications. In the present study, a dual-rotor type pump which contains two counter-rotating cylinders for improving performance characteristics is proposed. First, for flows in the single-rotor type pump, the present unstructured grid simulation method is validated by comparing its results to the previous results. Next, the performance of the dual-rotor type pump is evaluated by the parametric studies and is compared to that of the previous single-rotor type pump. The flow characteristics are qualitatively similar to those of single-rotor type pump. However, the performance of the micropump with tandem rotors is still better than that of previous pumping type, e.g. much larger flow rate, smaller driving region, higher efficiency, and wider operation range.

DEVELOPMENT OF 2D DAM BREAK FLOW ANALYSIS MODEL USING FRACTIONAL STEP METHOD

  • Kim, Dae-hong;Kim, Woo-gu;Chae, Hyo-sok;Park, Sang-geun
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.23-30
    • /
    • 2002
  • A numerical model for the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Grid Discretization Study for the Efficient Aerodynamic Analysis of the Very Light Aircraft (VLA) Configuration

  • Sitio, Moses;Kim, Sangho;Lee, Jaewoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.122-132
    • /
    • 2013
  • In this research the development of unstructured grid discretization solution techniques is presented. The purpose is to describe such a conservative discretization scheme applied for experimental validation work. The objective of this paper is to better establish the effects of mesh generation techniques on velocity fields and particle deposition patterns to determine the optimal aerodynamic characteristics. In order to achieve the objective, the mesh surface discretization approaches used the VLA prototype manufacturing tolerance zone of the outer surface. There were 3 schemes for this discretization study implementation. They are solver validation, grid convergence study and surface tolerance study. A solver validation work was implemented for the simple 2D and 3D model to get the optimum solver for the VLA model. A grid convergence study was also conducted with a different growth factor and cell spacing, the amount of mesh can be controlled. With several amount of mesh we can get the converged amount of mesh compared to experimental data. The density around surface model can be calculated by controlling the number of element in every important and sensitive surface area of the model. The solver validation work result provided the optimum solver to employ in the VLA model analysis calculation. The convergence study approach result indicated that the aerodynamic trend characteristic was captured smooth enough compared with the experimental data. During the surface tolerance scheme, it could catch the aerodynamics data of the experiment data. The discretization studies made the validation work more efficient way to achieve the purpose of this paper.

건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법 (Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building)

  • 이주희;장진우;이현균;이용준;이규성
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

비정형격자기반 도시침수해석모형 개발 (Development of Urban Flood Analysis Model Adopting the Unstructured Computational Grid)

  • 이창희;한건연;김지성
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.511-517
    • /
    • 2006
  • 홍수 피해는 인간에게 영향을 미치는 가장 중요하고 영향력 있는 자연재해 가운데 하나이다. 도시지역에서 국지적인 호우가 배수시스템의 용량을 초과할 경우 홍수피해가 발생된다. 도시지역에서 발생한 홍수는 도시산업과 교통 시스템을 마비시키며, 공공시설물에 막대한 피해를 야기시키다. 도시지역에서 이러한 피해를 줄이기 위해서는 도시지역의 복잡한 지형과 인위적인 배수시스템을 동시에 고려하기에 적합한 모형이 필요하다. 본 연구에서는 도시홍수의 침수범위, 침수심과 같은 홍수특성을 모의하기 위한 비정형격자기반 도시침수해석모형을 개발하였고, 이를 배수 시스템과 연계하였다. 본 연구를 통해 홍수 위험지역을 계산하고, 홍수대비지도를 만드는데 활용될 수 있다. 또한, 홍수담당기관의 의사지원시스템의 한 부분으로 활용되어 침수경감대책수립에 이용될 수 있다.

기하학적 Octree 격자생성법을 이용한 자동차 헤드램프 내부의 열유동 계산 (Computation of Thermal Flow for Automotive Lamp by Using Geometric Octree Method)

  • 사종엽;박종렬;강동민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.152-156
    • /
    • 2001
  • Three dimensional orthogonal grid generation is able to control effectively the grid spacing near the boundaries, but there are some difficulty to meshing complex geometry. The mesh complex geometry by orthogonal grid generation method must divide block of geometry It is required a careful skill, and long time. Its also difficulty to make unstructured mesh on complex geometry. Particularly, three dimensional geometry must have more time and effort. Recently, there have been growing interests in mesh generation of complex grometry, aslike an automobile headlamp, the heart. The method of easily meshing complex geometry is resarched to solve them. We suggest octree grid into one among these methods. As octrce grid is automaticaly adapted at the boundaries by determine the level operations to control the grid spacing near the boundaries are unnecessary. In this paper we showed throe dimensional mesh generation, and heat-flow analysis on the octree mesh.

  • PDF