• Title/Summary/Keyword: Unsteady Vortex

Search Result 387, Processing Time 0.02 seconds

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise (원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF

Effects of Torsional Flexibility on a Flapping Airfoil (플랩핑 에어포일에 대한 비틀림 유연성의 영향)

  • Cho, Moon-Sung;Bae, Jae-Sung;Kim, Hark-Bong;Kim, Woo-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1146-1151
    • /
    • 2008
  • In this paper, the effects of torsional flexibility on a flapping airfoil are investigated. The aerodynamic forces of a torsional flexible flapping airfoil is computed using 2-D unsteady vortex panel method. A typical-section aeroelastic model is used for the aeroelsatic calculation of the flapping airfoil. Torsional flexibility and excitation frequency are considered as main effective parameters. Under heavy airfoil condition , the thrust peak is observed at the points where the frequency ratio is about 0.75. Based on this peak criterion, there exists two different motions. One is an inertia driven deformation motion and the other is an oscillation driven deformation motion. Also, in the thrust peak condition, the phase angle is kept 85 degrees, independent of the torsional flexibility and the excitation frequency.

ANALYSIS OF EIGEN VALUES FOR EFFECTIVE CHOICE OF SNAPSHOT DATA IN PROPER ORTHOGONAL DECOMPOSITION (적합직교분해 기법에서의 효율적인 스냅샷 선정을 위한 고유값 분석)

  • Kang, H.M.;Jun, S.O.;Yee, K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • The guideline of selecting the number of snapshot dataset, $N_s$ in proper orthogonal decomposition(POD) was presented via the analysis of Eigen values based on the singular value decomposition(SVD). In POD, snapshot datasets from the solutions of Euler or Navier-Stokes equations are utilized to SVD and a reduced order model(ROM) is constructed as the combination of Eigen vectors. The ROM is subsequently applied to reconstruct the flowfield data with new set of flow conditions, thereby enhancing the computational efficiency. The overall computational efficiency and accuracy of POD is dependent on the number of snapshot dataset; however, there is no reliable guideline of determining $N_s$. In order to resolve this problem, the order of maximum to minimum Eigen value ratio, O(R) from SVD was analyzed and presented for the decision of $N_s$; in case of steady flow, $N_s$ should be determined to make O(R) be $10^9$. For unsteady flow, $N_s$ should be increased to make O(R) be $10^{11\sim12}$. This strategy of selecting the snapshot dataset was applied to two dimensional NACA0012 airfoil and vortex flow problems including steady and unsteady cases and the numerical accuracies according to $N_s$ and O(R) were discussed.

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Time-Domain Simulation of Nonlinear Free-Surface Flows around a Two-Dimensional Hydrofoil (2차원 수중익주위 비선형 자유표면유동의 시간영역 시뮬레이션)

  • Yong-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.45-56
    • /
    • 1994
  • A computationally efficient numerical method based on potential flow is developed for time-domain simulation of the nonlinear free-surface flows around a 2-dimensional hydrofoil. This numerical method, namely, spectral/boundary-element method, is a mixed one of the high-order spectral method and the boundary-element method in time-domain. The high-order spectral method is used to calculate the nonlinear evolution of free-surface, and the boundary-element method is used to calculate the effects of the hydrofoil and the shed vortex. As application examples, nonlinear free-surface flows around a 2-dimensional hydrofoil which starts from the rest and translates near the free-surface with or without harmonic oscillations are calculated. Nonlinear/unsteady results of free-surface waves and hydrodynamic farces are shown and discussed. Particularly, the results of steady-state which are obtained as a special case of the present unsteady solution are compared with others' calculated and experimental results, and good agreements are observed.

  • PDF

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Flow Analysis of POSRV Subsystem of Standard Korean Nuclear Reactor (한국 표준형 원전의 POSRV 하부 배관 유동해석)

  • Kwon, Soon-Bum;Kim, In-Goo;Ahn, Hyung-Joon;Lee, Dong-Eum;Baek, Seung-Cheol;Lee, Byeong-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1464-1471
    • /
    • 2003
  • In order to investigate the flows with shock wave in branch, 108$^{\circ}$ elbow and T-junction of the IRWST system of standard Korean nuclear reactor, detail time dependent behaviors of unsteady flow with shock wave, vortex and so on are obtained by numerical method using compressible three-dimensional Navier-Stokes equations. At first, the complex flow including the incident and reflected shock waves, vortex and expansion waves which are generated at the corner of T-junction is calculated by the commercial code of FLUENT6 and is compared with the experimental result to obtain the validation of numerical method. Then the flow fields in above mentioned units are analyzed by numerical method of [mite volume method. In numerical analysis, the distributions of flow properties with the moving of shock wave and the forces acting on the wall of each unit which can be used to calculate the size of supporting structure in future are calculated specially. It is found that the initial shock wave of normal type is re-established its type from an oblique one having the same strength of the initial shock wave at the 4 times hydraulic diameters of downstream from the branch point of each unit. Finally, it is turned out that the maximum force acting on the pipe wall becomes in order of the T-junction, 108$^{\circ}$ elbow and branch in magnitude, respectively.