• 제목/요약/키워드: Unsteady Pressure Distribution

검색결과 108건 처리시간 0.025초

대형 풍력발전기 블레이드의 광대역 소음 신호 예측 및 분석 (Prediction of broadband noise signal from a large wind turbine)

  • 이승훈;이승민;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • This study predicted broadband noise from a generic 2.5MW wind turbine blade in the time domain. The rotor blade was modeled as thin rectangular flat plates. A simplified analytic model proposed by Amiet was used to model the unsteady surface pressure distribution. The acoustic pressure was calculated by using the loading term of Formulation 1A proposed by Farassat. The validation was also performed by comparing with an experiment of Brooks, Pope, and Marcolini. By using these numerical methods, the broadband noise signal of the wind turbine was successfully predicted in this study.

  • PDF

격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산 (Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method)

  • 강호근;노기덕;손강필;최민선;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

이중원관 구속제트의 유동특성에 관한 연구 (A Study on Flow Characteristics of Confined Circular Jet within Pipe)

  • 서민식;최장운;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구 (An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine)

  • 김봉곤;하종률;권순석
    • 오토저널
    • /
    • 제12권1호
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

에어컨용 직교류홴의 저소음화를 위한 실험적 연구 (An experimental study for noise reduction of the cross-flow fan of the room air-conditioners)

  • 구형모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.871-879
    • /
    • 1999
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectrums of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared of the experimental rig with and without the bounding fence for various flow rates.

  • PDF

상수관망의 수격현상 모의를 위한 외부 유출입 유량의 효율적해석 (Efficient Calculation of External Flow for Transient Simulation in Pipe Networks)

  • 박재홍;한건연
    • 한국수자원학회논문집
    • /
    • 제34권5호
    • /
    • pp.427-438
    • /
    • 2001
  • 본 연구에서는 상수관망의 비정상 상태 흐름을 해석하기 위하여 파속조절법을 이용하여 관망해석모형을 개발하였다. 특성선법을 이용한 실제 상수관망에서의 부정류 해석시 다양한 경계조건의 존재로 인해 해석과정이 매우 복잡하게 된다. 이러한 특성선법 해석의 어려움을 극복하고자 보다 간단하고 정확하게 경계조건을 처리할 수 있는 기법을 도입하였고 외부 유출 유량을 직접적으로 해석할 수 있는 방정식을 유도하였다. 또한 유도된 방정식을 이용하여 수격해석 모형을 개발하였으며 모형의 적용성 검토를 위해 여러 가지 외부유출 유량 경계조건을 가진 가상관망 및 26 개 관로를 가진 실제관망에 개발된 모형을 적용하였다. 본 모형의 모의결과는 Karney의 해석결과와 비교되었고 모든 시간대의 유량과 압력들을 잘 일치하고 있었다.

  • PDF

액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구 (Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines)

  • 최창호;이기수;김진한;양수석;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.264-270
    • /
    • 2001
  • The hydraulic performance analysis of an entire pump system composed of an inducer, impeller, volute and seal for the application on turbopumps is performed using three-dimensional Wavier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this wort the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results due to the limitation of the applying the quasi-steady method. Since the volute was found to be over-designed according to the pressure distribution of the volute wall, redesign of the volute has been performed resulting in an improved performance characteristic.

  • PDF

유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석 (Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구 (Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines)

  • 최창호;이기수;김진한;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.