• Title/Summary/Keyword: Unsteady Interaction

Search Result 280, Processing Time 0.025 seconds

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Numerical Study of Flow Characteristics due to Interaction Between a Pair of Vortices in a Turbulent Boundary Layer

  • Yang, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.147-157
    • /
    • 2006
  • This paper represents a numerical study of the flow field due to the interactions between a pair of vortices produced by vortex generators in a rectangular channel flow. In order to analyze longitudinal vortices induced by the vortex generators, the pseudo-compressibility method is introduced into the Reynolds-averaged Navier-Strokes equations of a 3-dimensional unsteady, incompressible viscous flow. A two-layer $k-{\epsilon}$ turbulence model is applied to a flat plate 3-dimensional turbulence boundary to predict the flow structure and turbulence characteristics of the vortices. The computational results predict accurately the vortex characteristics related to the flow field, the Reynolds shear stresses and turbulent kinetic energy. Also, in the prediction of skin friction characteristics the computational results are reasonably close to those of the experiment obtained from other researchers.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

The Effect of Inlet Distorted Flow on Steady and Unsteady Performance of a Centrifugal Compressor (입구 비 균일 유동이 원심압축기의 정상 및 비정상 성능에 미치는 영향)

  • Kang Shin-Hyoung;Park Jae-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.971-978
    • /
    • 2005
  • Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed and at the lower flow rate for high speed. For 50,000 rpm stall occurrs as the flow rate decreases, however disappears fur the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases.

Characteristics of thermoacoustic oscillation in ducted flame burner (관형 연소기의 열 음향학적 특성에 관한 실험적 연구)

  • 조상연;이수갑
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

Unsteady Interaction of the Surface Gravity Waves with the Nonuniform Current

  • Lee, Kwi-Joo;Kim, Kyoung-Hwa;Ra, Young-Kon;Shermeneva, M.A.;Shugan, I.V.
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.34-39
    • /
    • 2002
  • 본 논문에서는 수면파(Surface wave)와 수중파 (Internal wave)간의 동적 상관관계에 관하여 수행된 연구결과를 정리하였다. 표면파의 비선형 문제는 파의 경사매개변수를 2차원으로 가정하여 해석하였으며, Cauchy 문제는 불균일 조류상의 균일 수면중력파에 대하여 해석하였다. 또한, 파의 경사, 주기의 범위(Frequency range) 그리고 자유표면하의 조류의 분포들간의 조화에 대한 연구가 수행되었으며 해류 및 이동파와 연계되어 수중파의 최전 후방에 형성될 수 있는 정적 파형 (Steady wave pattern)이 수면파형에 포함되었다.

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim Y. M.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. Special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

Numerical study of Three-Dimensional Viscous Flow and Compression Wave Induced by the High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철 주위의 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the viscous flow field and compression wave around the high speed train which is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation owing to the viscous interaction around the train was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed.

  • PDF

Numerical Simulation on Thermoacoustic Instability in the Dump Combustor (덤프 연소기에서의 열음향 불안정에 관한 수치적 연구)

  • Kim, Hyeon-Jun;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF