• 제목/요약/키워드: Unsteady Flows

검색결과 397건 처리시간 0.023초

단일 공동주위의 2차원과 3차원 초음속 유동 비교 (COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY)

  • 우철훈;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF

2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구 (NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS)

  • 최홍일;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템 (Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts)

  • 강민구
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

배경회전하에서 형성되는 주기적 유동의 3차원 수치해석과 실험 (Three-Dimensional Numerical Computation and Experiment on Periodic Flows under a Background Rotation)

  • 서용권;박재현
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.628-634
    • /
    • 2003
  • We present numerical and experimental results of periodic flows inside a rectangular container under a background rotation. The periodic flows are generated by changing the speed of rotation periodically so that a time-periodic body forces produce the unsteady flows. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons \ulcornerf discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구 (BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER)

  • 강승희;권오준
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.

변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석 (THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH)

  • 유일용;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.34-37
    • /
    • 2009
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

  • PDF

변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석 (THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH)

  • 유일용;이병권;이승수
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.37-45
    • /
    • 2010
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

축소-확대 유로에서의 가열에 의한 비정상 유동의 특성에 관한 연구 (A Numerical Study on Characteristics of Unsteady Flows Caused by Heat Addition in a Convergent-Divergent Duct)

  • 김장우;정진도
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.765-771
    • /
    • 2002
  • This Paper presents numerical solutions of two-dimensional Euler equations for supersonic steady and unsteady flows with heat addition in a convergent-divergent duct, The Van Leer FVS (flux vector splitting) method in generalized coordinates is employed in order to calculate the inviscid strong shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena caused by thermal choking, limit of equivalence ratio to avoid thermal choking and fluctuation of specific thrust caused by thermal choking. We prove that thermal choking is a serious problem in view of engine performance.

와류입자법에 의한 비정상 박리흐름의 전산(I) -경계요소법과 정방형 실린더 주위의 와류강도- (Computation of Unsteady Separated Flow Using the Vortex Particle Method (I) - Boundary Element Method and Vortex Strength Around the Square Cylinder -)

  • 박외철
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.3-8
    • /
    • 1998
  • The vortex particle method, which includes viscous effects, consists of diffusion of boundary vorticity and creation of the vortex particles, convection, particle strength exchange, and particle redistribution. Accuracy of the boundary element method is very important since it creates the particles around the body at every time step. A boundary element method based on source panel was investigated as part of computation of unsteady separated flows by rising the vortex particle method. The potential flows were computed around a circular cylinder and a square cylinder. The results around the circular cylinder were compared with the exact solution, and the distribution of vorticity, in particular near the sharp comers of the square cylinder, is scrutinized for different number of panels.

  • PDF