• Title/Summary/Keyword: Unsteady Flow-Field

Search Result 410, Processing Time 0.023 seconds

Prediction of Unsteady Performance of a Propeller by Using Potential-Based Panel Method (포텐셜을 기저로 한 패널법에 의한 프로펠러의 비정상유동해석)

  • I.S. Moon;Y.G. Kim;C.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • This paper describes a potential-based panel method for the prediction of unsteady performance of a marine propeller operating in a non-uniform flow field. Boundary-value problem, formulated by distributing the normal dipoles and sources on the blade, the hub and the shed wake, is descretized and numerically analyzed in a discretized time domain. Through an extensive test and comparison with the analytic solution, the convergence in time step is verified for a two-dimensional foil. Unsteaty analysis is then carried out for the DTRC 4118 propeller operating in a harmonic wake, and compared favorably with the experimental result. The present method is shown applicable to the analysis of unsteady performance of the propellers.

  • PDF

The Study of Turbulence Model of Low-Reynolds Number Flow (저 레이놀즈수 유동장에서의 난류모델에 관한 연구)

  • Yoo C.;Lee J. S.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Numerical calculations of aerodynamic performance for ATM train at crosswind conditions

  • Rezvani, Mohammad Ali;Mohebbi, Masoud
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.529-548
    • /
    • 2014
  • This article presents the unsteady aerodynamic performance of crosswind stability obtained numerically for the ATM train. Results of numerical investigations of airflow past a train under different yawing conditions are summarized. Variations of occurrence flow angle from parallel to normal with respect to the direction of forward train motion resulted in the development of different flow patterns. The numerical simulation addresses the ability to resolve the flow field around the train subjected to relatively large yaw angles with three-dimensional Reynolds-averaged Navier-Stokes equations (RANS). ${\kappa}-{\varepsilon}$ turbulence model solved on a multi-block structured grid using a finite volume method. The massively separated flow for the higher yaw angles on the leeward side of the train justifies the use of RANS, where the results show good agreement with verification results. A method of solution is presented that can predict all aerodynamic coefficients and the wind characteristic curve at variety of angles at different speed.

Flow Analysis of Gas Circuit Breakers for Developing the Small Current Interruption Performance (가스차단기의 소전류 차단성능 향상을 위한 유동해석)

  • Lee, Jong-Chul;Choi, Jong-Ung;Kang, Sung-Mo;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1961-1965
    • /
    • 2003
  • The flow analysis is needed to verify the physical phenomena through interruption processes for improving the capacity and the reliability of gas circuit breakers. Moreover the small current interruption performance of GCBs could be predicted by coupling the flow characteristics with the electric field one. In this paper, the unsteady flow characteristics and the traveling trajectory are depicted with a commercial CFD code, PHOENICS, programmed for moving motion of objects. In order to validate computational results, the measured pressure data in cylinder and in front of arcing contact are compared with the test results of small current interruption.

  • PDF

Numerical Analysis for a Simple Shape Silencer for Intensity Diminution of High Pressure Blast Flow Fields (고압 폭발 유동장의 강도 감소를 위한 간단한 형상의 소음기에 대한 수치해석)

  • Ko S. H.;Woo S. D.;Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.91-94
    • /
    • 2004
  • A numerical analysis was made to investigate the intensity diminution of a simple silencer for high pressure blast flow fields. Reynolds-Averaged Wavier-Stokes equations were solved for an axisymmetric computational domain constructed by multi block Chimera grids. A blast flow field without the silencer was also calculated to validate the present numerical method. The evolution of high pressure blast flow fields was observed by depicting calculated contours of pressure and Mach number. It was found that the tested silencer could achieve 76 percent intensity diminution.

  • PDF

Measurement of Flow Field in a Domestic Boiler Circulation Pump by PIV (PIV에 의한 가정용보일러용 순환펌프의 내부 유동장 계측)

  • Im, Y.C.;Kim, J.H.;Choi, M.S.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.13-19
    • /
    • 1999
  • The purpose of the present experimental study is to apply multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to high-speed flow region within a domestic boiler circulation pump. Two different kinds of flow rate($27{\ell}/min,\;19{\ell}/min$)are selected as experimental condition. A volute casing and Impeller made of transparent Polycarbonate were made for the easy access of the illumination laser via fiber optical line and cylinder lens assembly to the measuring region. A CCD camera is syncronized with AOM to acquire clear original particle images. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous and time-mean velocity distribution, velocity profile and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a commercial circulation pump.

  • PDF

Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body (3차원 미니밴 형상 주위의 비압축성 점성 유동 해석)

  • Jung Y. R.;Park W. G.;Park Y. J.;Kim J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.46-51
    • /
    • 1996
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. The fourth -order artificial damping is added to the continuity equation for numerical stability. A H-H type multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. The simulation shows three dimensional vortex-pair just behind body. And the flow separation is also observed the rear of the body. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

Numerical Analysis for High Pressure Blast Flow Fields of a Silencer with Baffles (배플형 소음기가 적용된 고압 폭발 유동장에 대한 수치 해석)

  • Lee D. S.;Ko S. H.;Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.169-172
    • /
    • 2005
  • A numerical analysis was made In investigate the pressure diminution of a silencer with baffles for high pressure blast flow fields. Reynolds-Averaged Navier-Stokes equations were solved for an axisymmetric computational domain constructed by multi block Chimera grids. A blast flow field was calculated for the silencers that are with one and three baffles. The evolution of high pressure blast flow fields was observed by depicting calculated contours of pressure. It was found that the tested silencer could achieve 97.7 percent pressure diminution.

  • PDF

Velocity and Temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper Channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, C.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method (Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석)

  • Park K. S.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF