• Title/Summary/Keyword: Unsteady Flow-Field

Search Result 410, Processing Time 0.024 seconds

On the Problem of Using Mixing Index Based on the Concentration Dispersion (농도분산에 근거한 혼합지수 사용의 문제)

  • Suh Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.796-805
    • /
    • 2006
  • In this study, the problem of using the mixing index as a measure of the mixing performance for a certain flow field has been discussed. The flow model subjected to this study is the two-dimensional unsteady lid-driven cavity flow. The transport equation for the concentration within the cavity was solved by using the finite volume method where the convective terms are discretized with the central difference scheme. It was shown that both the concentration dispersion and the mixing index depend highly on the initial distribution of the concentration, and therefore the mixing index obtained from the concentration dispersion equation loses its universal applicability.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Oil Flow Distribution Control of Engine Lubrication System Using Orifice Component (오리피스를 이용한 엔진 윤활시스템 유량분배 제어)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • It is very important to control pressure and flow rate distribution on each component of engine lubrication network. Sometimes many kinds of orifice are used to control flow rate in the hydraulic lubrication field. In this study orifices were adopted on the lubrication network to control oil flow rate distribution. And unsteady transient flow network analysis was carried out to find out the effects of orifices on the engine oil circuit system.

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

Behavior of Rotating Stall Cell in a High Specific-Speed Diagonal Flow Fan

  • Shiomi, Norimasa;Cai, W.X.;Muraoka, A.;Kaneko, K.;Setoguchi, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1860-1868
    • /
    • 2001
  • An experimental investigation was carried out to clarify unsteady flow fields with rotating stall cell, especially behavior of stall cell, in a high specific-speed diagonal flow fan. As its specific-speed is vary high for a diagonal flow fan, its pressure-flow rate curve tends to indicate unstable characteristics caused by rotating stall similar to axial flow fan. Although for an axial flow fan many researchers have investigated such the flow field, for a diagonal flow fan tittle study has been done. In this study, velocity fields at rotor Inlet in a high specific-speed diagonal flow fan were measured by use of a single slant hot-wire probe. These data were processed by using the "Double Phase-Locked Averaging"(DPLA) technique, i. e. phases of both the rotor blade and the stall cell were taken into account. The behaviors of stall cell at rotor inlet were visualized for the meridional, tangential and radial velocity.

  • PDF

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Time-dependent natural convection in a glass melting furnace (유리용융로의 시간종속 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.919-927
    • /
    • 1997
  • The main purpose of this study is to determine bifurcation as the primary instability of a glass melting furnace. Steady-state and unsteady characteristics of natural convection in the partially open cavity as appeared in a glass melting furnace is investigated by using numerical analysis. Three types of convection, such as steady laminar, unsteady periodic or unsteady quasi-periodic convection may occur according to the temperature difference between upper two isothermal surfaces along the depth of cavity in a glass melting furnace. In the temperature difference of 150-900 K between batch and free surface, the larger the temperature difference, the weaker the convection strength and unsteadiness. Since the glass viscosity is increasing exponentially in the lower temperature, the batch freezes the thermofluidic field especially below the surface of it. If the depth of cavity is 0.5 m, the bifurcation to time-dependent natural convection may occur in the range of 60-650 K. If that is 1.0 m, it may occur in the whole range of temperature difference.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

NUMERICAL INVESTIGATION OF VORTICAL FLOW INDUCED BY A SYNTHETIC JET ACTUATOR (Synthetic Jet 주위 유도 와류에 대한 수치 해석)

  • Park, S.H.;Sa, J.H.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.120-125
    • /
    • 2006
  • Piezoelectric actuators have been investigated for flow control in the field of fluid dynamics. Numerical simulation for a single diaphragm piezoelectric actuator operating in quiescent air is performed to investigate the complex flow field around the slot exit. A periodic velocity transpiration condition is applied to simulate the effect of the moving diaphragm. The computational results for the flow field around the slot exit agree well with the experimental data. The results also show that low pressure regions due to the vortex pairing cause non-monotonic variations in the vertical velocity.

  • PDF