• Title/Summary/Keyword: Unstable Surface

Search Result 532, Processing Time 0.022 seconds

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

Effect of Pelvic Compression Belt on Abdominal Muscle Activity, Pelvic Rotation and Pelvic Tilt During Active Straight Leg Raise

  • Jo, Eun-young;An, Duk-hyun
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Background: Uncontrolled lumbopelvic movement leads to asymmetric symptoms and causes pain in the lumbar and pelvic regions. So many patients have uncontrolled lumbopelvic movement. Passive support devices are used for unstable lumbopelvic patient. So, we need to understand that influence of passive support on lumbopelvic stability. It is important to examine that using the pelvic belt on abdominal muscle activity, pelvic rotation and pelvic tilt. Objects: This study observed abdominal muscle activity, pelvic rotation and tilt angles were compared during active straight leg raise (ASLR) with and without pelvic compression belt. Methods: Sixteen healthy women were participated in this study. ASRL with and without pelvic compression belt was performed for 5 sec, until their leg touched the target bar that was set 20 cm above the base. Surface electromyography was recorded from rectus abdominis (RA), internal oblique abdominis (IO), and external oblique abdominis (EO) bilaterally. And pelvic rotation and tilt angles were measured by motion capture system. Results: There were significantly less activities of left EO (p=.042), right EO (p=.031), left IO (p=.039), right IO (p=.019), left RA (p=.044), and right RA (p=.042) and a greater right pelvic rotation angle (p=.008) and anterior pelvic tilt angle (p<.001) during ASLR with pelvic compression belt. Conclusion: These results showed that abdominal activity was reduced while the right pelvic rotation angle and anterior pelvic tilt angle were increased during ASLR with a pelvic compression belt. In other words, although pelvic compression belt could support abdominal muscle activity, it would be difficult to control pelvic movement. So pelvic belt would not be useful for controlled ASLR.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Conservation of Wooden Furniture in Presidential Archives of National Archives of Korea (국가기록원 대통령기록관 소장 목가구 보존처리)

  • Lee, Kwang-Hee;Park, Jung-Hae;Kim, Su-Chul
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • In this paper, conservation treatment processes for the wooden furniture in the Presidential Archives are introduced. Conservation treatment strategies for modern wooden cultural heritage have been increasingly studied. The current study uses materials similar to those used by the existing conservation treatment method. Material analysis showed that the chair(Lee136-2) and desk(Yun37) in the Presidential Archives are made of Dipterocarpaceae, and both are coated with two layers of varnishing. FT-IR analysis showed that the varnish has a similar spectrum to that of a nitrocellulose-based lacquer(Lee136-2) and top coat(Yun37) and confirmed that a synthetic material was used. Pollutants had adhered to the surface of the wooden furniture and it was also in structurally unstable condition because of cracks and damage to the varnish and wood. Therefore, a conservation treatment was carried out to restore the damaged areas to their original appearance using similar kinds of materials, based on data obtained by materials analysis.

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.

The Effects of Muscle Activation of Upper and Lower Serratus Anterior During Scapular Protraction Exercises With Unstable Surface in Sitting Position (앉은 자세에서 불안정한 접촉면을 이용한 어깨뼈 내밈 운동이 위 그리고 아래 앞톱니근 활성화에 미치는 영향)

  • Jang, Tae-Jin;Hwang, Byeong-Hun;Jeon, In-Cheol
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.194-199
    • /
    • 2021
  • Background: The scapulo-thoracic musculatures including serratus anterior (SA), upper trapezius and lower trapezius can provide shoulder stability and functional shoulder movement. Objects: The muscle activities of upper and lower SA were compared during three different scapular protraction exercises in healthy individuals in sitting position. Methods: Twenty-five healthy subjects were participated. Electromyography device was used to measure muscle activity of upper and lower SA and trapezius muscles. Each subject was asked to perform three different scapular protraction exercises (scapular protraction [SP], SP with self-resistance [SPSR], SPSR with hand-exerciser [SPSRH]) in random order. One-way repeated measures analysis of the variance and a Bonferroni post hoc test were used. Results: The muscle activity of lower SA muscle was significantly different among three conditions (SP vs. SPSR vs. SPSRH) (p < 0.01). The lower SA muscle activity was significantly greater during SPSRH compared to SP and SPSR, which required joint stability more than SP and SPSR (p < 0.01). Conclusion: SPSRH exercise can be recommended to facilitate the muscle activity of lower SA. In addition, the intramuscular variation in the upper and lower SA during scapular protraction exercise is required to consider the effective rehabilitation.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

Muscle Elasticity Changes in the Presence or Absence of Elastic Band Resistance During Bridge Exercise Using Gymball (짐볼을 이용한 교각운동 시 탄성밴드 저항 유·무에 따른 근탄성도의 변화)

  • Kim, Myung-Chul;Huh, Jun;Kim, Hae-In
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose : The purpose of this study was to compare and analyze whether there are changes in muscle elasticity when resistance using an elastic band is present or absent during a bridge exercise on an unstable surface with a gymball. Methods : Eighteen healthy adult college students attending E University in Gyeonggi-do, who voluntarily agreed to participate were included in this study. The subjects were instructed to perform the bridge exercise using a gymball both without resistance and with resistance using an elastic band. Myoton was used during the exercise to measure the elasticity of the rectus abdominis and biceps femoris muscles. Results : There was a significant difference in the stiffness of the rectus abdominis muscle on both sides before and after using the elastic band (p<.05). however, no significant difference was observed in the biceps femoris on either side (p>.05). Based on the evaluation of the frequency before and after using the elastic band, no significant difference was observed between the rectus abdominis and biceps femoris muscles on both sides (p>.05). The logarithmic decrement was significantly different in the right rectus abdominis muscle (p<.05), and there was no significant difference in the left rectus abdominis and both biceps femoris (p>.05). Conclusion : Resistance exercise using an elastic band is more effective in improving elasticity of the rectus abdominis muscle than without a elastic band during bridge exercise with a gymball.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.