• Title/Summary/Keyword: Unstable Phenomenon

Search Result 148, Processing Time 0.022 seconds

A Basic Experimental Study on the Squeak Noise Using the Pin-on-disk (Pin-on-disk를 이용한 기초 마찰소음 실험 연구)

  • Nam, Jae-Hyun;Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.736-741
    • /
    • 2012
  • Squeak noise is studied by using the pin-on-disk system with aluminum pin and steel disk. Noise induced by friction is measured with respect to the normal loads and sliding speeds. The negative slope of friction-velocity curve is seen when the squeak noise occurs. It is found that the normal load influences on the sound level of squeak noise. From the hammering test, the major frequency of the squeak noise is shown to correspond to one of system modes, which implies that squeak phenomenon arises from the unstable system modes. The result of FE analysis shows that the major squeak mode is the bending mode of the pin.

A Study on the Stability Improvement of Rotor System Supported by Hydrodynamic Bearing (동수압 저어널 베어링으로 지지된 회전축계의 안정성 향상에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 1995
  • The anisotropic pressure distribution of the hydrodynamic bearing may generate the unstable vibration phenomenon over a certain speed. These vibrations, known as whirl, whip or rotor instability, cannot be sustained over a wide range of rotational spees. Besides these vibrations not only perturb the normal operation of a rotating machine, but may also cause serious damage to the machinery system. And, it is really impossible to change one parameter without changing others, or difficult to fabricate the modified non-circular type bearing, with all the other cures used just now, In this study, hybrid bearing with magnetic exciter is designed for stability improvement of hydrodynamic bearing rotor system without changing mechanical parameters. For stability study, eigenvalue study of the bearing-rotor system is executed by finite element method and results of analyses and experiments show the possibilities of the stability improvement of the hydrodynamic bearing system by using the electricmagnetic force.

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Diagnosis on Unstable Phenomenon of High-Speed Rotating Circular Saws (고속 회전 톱의 불안정 현상에 대한 진단)

  • ;Mote, C. D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.187-193
    • /
    • 1998
  • In the tandom pencil slat saw lines, feeding of cedar blocks is often stopped because excessive motor current is required in a saw machine. These events are called "kickoffs' in factory lines. Kickoffs decrease productivity due to machine down-time and damage to saw blades often accompanies them. Researches on saw behavior at kickoff are required to understand and reduce the frequency and severity of kickoff events. This research aims at understanding the fundamental mechanisms of kickoffs during cutting, predicting the impending kickoff and evolving design improvements for high cutting performance with fewer and less severe kickoffs.offs.

  • PDF

Topology Optimization of a Brake Pad to Avoid the Brake Moan Noise Using Genetic Algorithm (Brake Moan Noise 소피를 위한 Brake Pad 위상최적화의 GA적용)

  • 한상훈;윤덕현;이종수;유정훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Brake Moan is a laud and strong noise occurring at any vehicle speed over 2 mph as a low frequency in below 600Hz. In this study, we targeted to shift the unstable mode that causes the brake moan from the moats frequency range to sufficiently higher frequency range to avoid the moan phenomenon. We simulated the finite element model and found out the nodes in which the brake moan occurs the most and we regarded the boundary and its relationship between the brake pad and the rotor as a spring coefficient k. With the binary set of the spring coefficient k, we finally used genetic algorithm (GA) to get the optimal topology of the brake pad and its shape to avoid the brake moan. The final result remarkably shows that genetic algorithm can be used in topology optimization procedures requiring complex eigenvalue problems.

Position Control of the Arago Disk using Fuzzy Techniques (퍼지 기법을 이용한 아라고 원판의 위치 제어)

  • Mun, Sang-Ik;Choe, Gun-Ho;Park, Gi-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, a fuzzy logic controller is designed for position control of an Arage disk. The Arage disk system is an experimental set to exploit Arago's disk phenomenon which is the operation principle of induction motors. Since the Arage disk system operates in stable, maginally stable, and unstable regions, it is suitable as a test system to evaluate efficiency of various control system design methods. It is shown that the fuzzy logic controller shows good responses for multi-operating points of Arage disk system, while the controllers using linearized models are able to control the system on only one operating point.

  • PDF

The Position of an Arago Disk System using Fuzzy Logic Control Technique (퍼지제어 기법을 이용한 아라고 원판 시스템의 위치 제어에 관한 연구)

  • Mun, Sang-Ik;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.709-711
    • /
    • 1999
  • In this paper, Fuzzy Logic Controller was Designed for the Degree control of Arago's disk system. Arago's disk system is an application of Arago's disk phenomenon which is the operating principle of induction motor. Since the Arago's disk system varies to stable region. maginally stable region, unstable region according to the degree of bar respectively, it is a sutable system which can be evaluate an efficiency of the system. While an existing controller which was designed using linearized system modeling could control the system on only one operating point, fuzzy logic controller has the advantage in showing good response for multi-operating points because it does not need system modeling.

  • PDF

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

PREDICTION OF THERMAL STRATIFICATION IN A U-BENT PIPE: A URANS VALIDATION

  • Pellegrini, M.;Endo, H.;Ninokata, H.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.33-42
    • /
    • 2012
  • In the present study, CFD is employed to investigate phenomena occurring during a process of thermal stratification in U-bent pipes at transitional Reynolds number. URANS evaluation had been chosen for its low computational costs during transient analysis and for the evaluation of modeling performance in these conditions. Application of CFD at transitional Reynolds number and buoyancy driven flows indeed contains deeper uncertainties in relation to the range of applicability for hydrodynamic and thermal models. The methodology applied in the work points out, through validations with the basic problems constituting the complex stratified phenomenon, the applicability of the current turbulence modeling. Accurate predictions have been found in relation to transitional Reynolds number in bent pipes and region of stability induced by the gravitational field. On the other hand the defects introduced in the unstable region of the U bent pipe, are discussed in relation to the adopted modeling.

Robust Adaptive Law in Adaptive Mechanism Showing Chaotic Phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙)

  • 전상영;임화영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1414-1420
    • /
    • 1994
  • In this paper the existence of chaotic signal is probed in adaptive dead beat control law for nonlinear dynamic system. These chaotic signal makes the system unstable and difficult to control, but it broaden the range of application, confirms the robustness of system and gives a lot of information. Considering of low correlation between chaotic signals, robust adaptive control method which uses for parameter estimation is proposed. With this algorithm the parameters converges stable rapidly. Finally the superiority of it is proved by computer simulation.

  • PDF