• Title/Summary/Keyword: Unstable Flow

Search Result 400, Processing Time 0.026 seconds

A Experimental Study on the Uneven Flow Distribution in the Windbox of an Oil-Fired Boiler (유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구)

  • Go, Young-Gun;Kim, Young-Bong;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.199-206
    • /
    • 2004
  • In the multi-burner power plant, uneven supplies of combustion air to multi-burner are induced by unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated and made to be distributed uniformly, In this study, scaled windbox model was used for tests and measured the velocities at the exit of the each burner and compared those with the CFD results.

  • PDF

Analysis of Steam Characteristics in Chun-cheon Lake by Building a Artificial Marsh (춘천호내 인공습지 조성에 따른 흐름특성 분석)

  • Choi, Han-Kuy;Park, Jae-Guk;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.215-219
    • /
    • 2009
  • Based on the data interpretation on an artificial marsh built in Chun-cheon Lake, the study analyzed flow characteristics and found that flow was unstable due to sediment of natural river but the effect of artificial marsh was similar with that of river improvement works. Flow velocity in the section of artificial marsh was found to be 1m/sec. Therefore flow velocity was stable, which could contribute to improving water quality. A flow velocity as well as stream vector was improved.

  • PDF

Drirect Numerical Simulation of Transitional Separated Flows Part II:Secondary Instability (천이박리유동의 직접수치모사 Part II:이차적 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2973-2980
    • /
    • 1996
  • Secondary instability in an obstructed channel is investigated using direct numerical simulation. Flow geometry under consideration is a plane channel with two-dimensional thin obstacles mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. As a basic flow, we consider an unsteady periodic solution which results from Hopf bifurcation. Depending on the Reynolds number, the basic flow becomes unstable to three-dimensional disturbances, which results in a chaotic flow. Numerical results obtained are consistent with experimental findings currently available.

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

Variation of Eigenvalues of the Multi-span Fuel Rod due to Periodic Flow Disturbance by the Flow Mixer (혼합날개의 주기적 유동교란에 따른 다점지지 연료봉의 고유치변화)

  • Lee, Kang-Hee;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • Long and slender body, like a fuel rod, oscillating in axial flow can be unstabilized even by the small cross flow which can be activated by the flow mixer or turbulent generator. It is important to include these effects of flow disturbance in dynamic stability analysis of nuclear fuel rod. This work shows how eigen frequency of a multi-span fuel rod can be changed by the swirl flow, which is discretely generated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was calculated. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

Evaluation of High Temperature Workability of A350 LF2 Using the Deformation Processing Map (변형 공정지도를 활용한 A350 LF2 소재의 고온 성형성 평가)

  • Jung E.J.;Kim J.H.;Lee D.G.;Park N.K.;Lee C.S.;Yeom J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.333-339
    • /
    • 2006
  • Hot deformation behavior of a carbon steel (A350 LF2) was characterized by compression tests in the temperature range of $800-1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$, The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing a deformation processing map. Processing maps were generated using the combination of dynamic material model (DMM) and flow instability theories based on the flow stability criteria and Ziegler's instability criterion. In order to evaluate the reliability of the map, the mirostructural characteristics of the hot compressed specimens were correlated with test conditions in the stable and unstable regime. The combined microstructural and processing map of A350 LF2 was applied to predict an optimum condition and unstable regions for hot forming.

Numerical Analysis of Detonation Wave Propagation in Annular Channel (환상 형 도관 내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-370
    • /
    • 2007
  • Present study examines detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. A parametric study was carried out for a various regimes of detonation waves from weakly unstable to highly unstable detonation waves. Numerical approaches that used in the previous study of numerical requirements of the simulation of detonation wave propagations in 2D and 3D channel were used also for the present study with OpenMP parallization for multi-core SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Characteristics of Bifurcation Phenomena of Symmetric Flow Pattern in a Plane Sudden-Expansion Flow (평면급확장유동내 대칭유동분기현상의 특성에 관한 연구)

  • Cho, Jin-Ho;Lee, Moon-J.;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.33-38
    • /
    • 2001
  • Bifurcation of unstable symmetric flow patterns to stable asymmetric ones in laminar sudden-expansion flow has been numerically investigated. Computations were carried out for an expansion ratio of 3 and over a range of the flow Reynolds numbers by using numerical methods of second-order time accuracy and a fractional-step method that guarantees divergence-free flowfields at all times. The critical Reynolds number above which bifurcation of pitchfork type to asymmetric flow pattern takes place is lower in a flow with a higher expansion ratio, in agreement with the previously reported results. The bifurcation diagrams show that the bifurcation takes place at a Reynolds number, $Re_c = 86.3$, higher than the value that has been reported. The lower critical Reynolds number may be due to deficiencies in their computations which employed SIMPLE-type relaxation methods rather than the initial-value approach of the present study. Characteristics of the flow development during the transition to asymmetric stable flow have been investigated by using spectral analysis of the velocity signals obtained by the simulations.

  • PDF

Behavior of Rotating Stall Cell in a High Specific-Speed Diagonal Flow Fan

  • Shiomi, Norimasa;Cai, W.X.;Muraoka, A.;Kaneko, K.;Setoguchi, T.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1860-1868
    • /
    • 2001
  • An experimental investigation was carried out to clarify unsteady flow fields with rotating stall cell, especially behavior of stall cell, in a high specific-speed diagonal flow fan. As its specific-speed is vary high for a diagonal flow fan, its pressure-flow rate curve tends to indicate unstable characteristics caused by rotating stall similar to axial flow fan. Although for an axial flow fan many researchers have investigated such the flow field, for a diagonal flow fan tittle study has been done. In this study, velocity fields at rotor Inlet in a high specific-speed diagonal flow fan were measured by use of a single slant hot-wire probe. These data were processed by using the "Double Phase-Locked Averaging"(DPLA) technique, i. e. phases of both the rotor blade and the stall cell were taken into account. The behaviors of stall cell at rotor inlet were visualized for the meridional, tangential and radial velocity.

  • PDF

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF