• 제목/요약/키워드: Unreinforced masonry wall

검색결과 40건 처리시간 0.027초

RC 경계골조를 설치한 신축 비보강 조적벽체의 내진성능 평가 (Seismic Performance Evaluation of Unreinforced Masonry Walls with Additional Boundary RC Frames)

  • 유영찬;김민선;이현지
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.27-35
    • /
    • 2018
  • The purpose of this study is to examine the effects of boundary RC frame(composed of one tie-beam and two tie-columns) on seismic performance of unreinforced masonry walls to suggest alternative way for seismic design of unreinforced masonry wall structures. Two test specimens are prepared, one is a typical unreinforced masonry wall and another is alternative unreinforced masonry wall with additional boundary RC frame. The structural experiments were carried out to evaluate the difference of seismic resistance performance between two test specimens with or without the boundary RC frames. From the test results, it was found that the failure mode of unreinforced masonry wall fundamentally changed from 'brittle' to 'ductile' by the installing of boundary RC frames. And, the maximum load and energy dissipation capacity of the test specimen with boundary RC frame was increased about 1.6~1.7 and 2~3 times respectively compared with a typical unreinforced masonry wall specimen.

주기하중을 받는 비보강 조적벽체의 강체회전거동 (Rocking Behavior of Unreinforced Masonry Walls Under Cyclic Load)

  • 엄태성;김진우;김선웅;김재환;한주연;최호
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-57
    • /
    • 2023
  • This study investigated the rocking behavior of unreinforced masonry walls and wall piers under cyclic loading. Based on the benchmark tests, the characteristics of load-deformation relations in masonry walls with rocking failure were captured, focusing on observed deformation modes. The rocking strengths of masonry walls (i.e., peak and residual strengths) were evaluated, and the effects of opening configurations on the masonry wall strength were examined. The deformation capacity of the rocking behavior and the hysteresis shape of the load-deformation relations were also identified. Based on the results, modeling approaches for the rocking behavior of masonry walls were discussed.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

조적채움벽의 면외보강에 관한 연구 (A study on out-of-plane strengthening of masonry-infilled wall)

  • 장혜숙;은희창
    • 산업기술연구
    • /
    • 제41권1호
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.

저층 조적건물의 내진성능평가 사례 연구 (Case Study of Seismic Evaluation of Low-Rise Masonry Buildings)

  • 엄태성;김찬호;이승제;김진우
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the seismic performance of a two-story unreinforced masonry (URM) building was assessed following the linear and nonlinear static procedures specified in the seismic evaluation guideline of existing buildings. First, the provisions to assess failure modes and shear strengths of URM walls and wall piers were reviewed. Then, a two-story URM building was assessed by the linear static procedure using m-factors. The results showed that the walls and wall piers with aspect ratios he // (i.e., effective height-to-length ratio) > 1.5 were unsafe due to rocking or toe crushing, whereas the walls with he // ≤ 1.5 and governed by bed-joint sliding mainly were safe. Axial stresses and shear forces acted upon individual masonry walls, and wall piers differed depending on whether the openings were modeled. The masonry building was reevaluated according to the nonlinear static procedure for a more refined assessment. Based on the linear and nonlinear assessment results, considerations of seismic evaluation for low-rise masonry buildings were given with a focus on the effects of openings.

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

Shear behaviour of Autoclaved Aerated Concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh

  • Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.487-498
    • /
    • 2023
  • Unreinforced masonry (URM) buildings are extensively adopted in many of the growing nations, particularly in India. Window or door openings are required for architectural or functional reasons, which pose a threat to the building's safety. The past earthquakes have shown that the seismic capability of these structures was very weak. Strengthening these unreinforced masonry walls using welded wire mesh (WWM) is one of the most commonly and economical methods. The present experimental study investigates the impact of openings on the shear behaviour of URM walls and the effectiveness of WWM in enhancing the shear performance of masonry wall. In the experimental program 16 specimens were cast, 8 unstrengthen and 8 strengthened specimens, under 8 unstrengthen and strengthened specimens, every 2 specimens had 0%, 5%, 10%, and 15% openings and all these walls were tested under diagonal compression. The results show that the shear carrying capacity reduces as the opening percentage increases. However, strengthening the URM specimens using WWM significantly improves the peak load, shear strength, ductility, stiffness, and energy dissipation. Furthermore, the strengthening of the URM walls using WWM compensated the loss of wall capacity caused by the presence of the openings.

FRP로 보강한 비보강 조적 벽체의 전단강도 산정 (Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet)

  • 배백일;윤효진;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.305-313
    • /
    • 2012
  • 비보강 조적조 건축물은 전세계적으로 기존의 건물 및 역사 건축물의 많은 부분을 차지하고 있다. 특히, 최근 지진이 전세계적으로 빈번하게 나타남에 따라 비보강 조적조 구조물에 대한 내진 보강 대책이 요구되고 있다. 현재 비보강 조적조의 보강방법으로는 숏크리트, ECC jacketing, FRPs(fiber reinforced polymer sheet) 등이 개발되어 사용되고 있다. 특히 많은 엔지니어들이 FRPs를 사용한 보강방법을 채택하는 경향이 보이는데 이는 숏크리트나 ECC jacketing과는 달리 벽체의 두께 확장에 따른 구조물 자중 증가 문제없이 비보강 조적조의 전단강도를 향상시킬 수 있기 때문이다. 그러나 비보강 조적 벽체의 복잡한 역학적 거동과 FRPs를 사용한 실험 데이터의 부족은 아직까지도 적절한 보강량을 산정하는데 어려움을 주고 있다. 이 연구는 비보강 조적조의 면내 거동을 확인하고 두 가지의 다른 특징을 가진 FRPs를 사용한 보강 효과에 대한 정보를 주기 위해 수행되었다. 실험체는 1970년대 한국에서 빈번하게 지어진 저층형 연립주택의 내벽을 대상으로 하고 있으며 별도의 내진 설계는 되어있지 않은 상태이다. 실험체의 형상비는 실제 상황을 반영하기 위해 1에 가깝게 설정되어 있다. 보강 재료로는 탄소섬유보강 시트와 하이브리드 시트를 사용하였으며 이들은 각각 다른 극한 강도와 탄성계수 및 극한 변형률을 보유하고 있다. 연구 결과 비보강 조적 벽체의 면내 전단력 저항 성능을 확인하였으며 FRPs가 사용된 내진 보강 방안의 특성을 분석할 수 있었다. 또한 FRPs를 사용한 보의 전단보강 방법에 착안하여 비보강 조적조에 대한 FRPs의 보강 설계안을 도출할 수 있었다.

변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정 (Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure)

  • 설윤정;박지훈;곽병훈;김대호
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.