• Title/Summary/Keyword: Unmanned systems

Search Result 879, Processing Time 0.023 seconds

A Study on UCT Steering Control using NNPID Controller (신경회로망 자기동조 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • 손주한;이영진;이진우;조현철;이권순;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.363-369
    • /
    • 1999
  • In these days, there are a lot of studies in the port automation, for example, unmanned container trasporter, unmanned gantry crain, and automatic terminal operation systems and so on. In terms of loading and unloading equipments. we can consider container transporter. This paper describes the automatic control for the UCT(unmanned container transporter), especially steering control systems. UCT is now operated on ECT port in Netherland and tested on PSA ports in Singapore. So we present a design on the controller using neural network PID(NNPID) controller to control the steering system and we use the neural network self-tuner to tune the PID parameters. The computer simulations show that our proposed controller has better performances than those of the other.

  • PDF

A Study on Experimental Special Airworthiness Certification for Unmanned Aircraft Systems (무인항공기시스템의 실험분류 특별감항증명 제도에 관한 고찰)

  • Choi, Mijin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.55-62
    • /
    • 2020
  • Special airworthiness certificates can be issued if the aircraft does not meet the airworthiness standards, but it is deemed that it can be operated safely by partially limiting the scope of operation and flight performance. Currently, Korea is subject to experimental special certification for UAS(Unmanned Aircraft Systems) exceeding 150 kg of its own weight, but detailed guidelines need to be prepared on how to prove that they can be operated safely in a limited range. Recently, Korea Airworthiness Standard(KAS) Part 21 has been revised to reflect this, but it needs to be supplemented. In this study, through an understanding and analysis of the FAA's procedure of expeirmental special airworthiness certifications for UAS, we would like to suggest what we should consider when developing relevant guidelines in our country.

A Literature Review of Unmanned Aircraft System (UAS) Integrated Constructed Facility Condition Inspections (무인항공체계 기반 시설물 상태점검 최근 연구동향 분석)

  • Kwon, Jin-Hyeok;Yun, Jiyeong;Youn, JongYoung;Lee, Donghoon;Kim, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.172-173
    • /
    • 2021
  • In recent, unmanned Aircraft Systems (UAS) have been widely used for various purposes, such as safety inspection, facility condition inspection, progress monitoring, in the architecture engineering, and construction (AEC) industry. This technology can provide visual assets regarding the conditions of construction jobsites as well as constructed facilities during flying over the point of interests. With the significant interests in this advancement, the recent studies have presented how the UAS can be applied fro different types of facilities (e.g., buildings, power genereation systems, roads, or bridges) to inspect the current conditions of them for safe operations as well as public's safety. This study reviewed the receent studies to document their scientific findings and practical contributions, as well as provided the overview of further implications for future studies.

  • PDF

A Study of Path-Finding Method of Small Unmanned Aerial Vehicles for Collision Avoidance (소형 무인비행체에서의 충돌회피를 위한 비행경로 생성에 관한 연구)

  • Shin, Saebyuk;Kim, Jinbae;Kim, Shin-Dug;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.76-80
    • /
    • 2017
  • With the fast growing popularity of small UAVs (Unmanned Aerial Vehicles), recent UAV systems have been designed and utilized for the various field with their own specific purposes. UAVs are opening up many new opportunities in the fields of electronics, sensors, camera, and software for pilots. Increase in awareness and mission capabilities of UAVs are driving innovations and new applications driven with the help of low cost and its capability in undertaking high threat task. In particular, small unmanned aerial vehicles should fly in environments with high probability of unexpected sudden change or obstacle appearance in low altitude situations. In this paper, current researches regarding techniques of autonomous flight of smal UAV systems are introduced and we propose a draft idea for planning paths for small unmanned aerial vehicles in adversarial environments to arrive at the given target safely with low cost sensors.

Developing an Optimal Location Selection Methodology of Unmanned Parcel Service Box (무인택배함의 최적입지 선정을 위한 방법론 개발)

  • Lee, Hyangsuuk;Chen, Maowei;Choo, Sangho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.13-24
    • /
    • 2017
  • This paper presents a sequentially combined method of determining location conditions, the number of unmanned parcel service box and their optimal locations. First of all, block, accessibility and main public facilities are considered as location conditions and then set-covering model and p-median model are adopted for deciding the number of unmanned parcel service box and optimal locations, respectively. A case study for a region composed of small housings and multiplex housings in Ansan is conducted to prove the validation and application of the proposed method. The result indicates that 2 unmanned parcel service boxes are necessary in specific public places. The research contributes to resonable choice of unmanned parcel service boxes, crime reduction relevant to delivery man impersonation and economic benefit due to parcel service industry growth.

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF

A Study on the Development and Standard Specification of Unmanned Traffic Enforcement Equipment for Two-Wheeled Vehicles (이륜차 무인교통단속장비 개발 및 표준규격 연구)

  • Byung chul In;Seong jun Yoo;Eum Han;Kyeongjin Lee;Sungho Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.126-142
    • /
    • 2023
  • The purpose of this study is to develop unmanned traffic enforcement equipment and standard specifications for the prevention of traffic accidents and violations of the two-wheeled vehicle laws. To this end, we conducted a review of the problems and new technologies of the currently operating unmanned traffic enforcement equipment on two-wheeled vehicles. And through a survey, the feasibility of introducing unmanned traffic enforcement equipment for two-wheeled vehicles and the current status of technology were investigated. In addition, the two-wheeled vehicle enforcement function was implemented through field tests of the development equipment, and the addition of enforcement targets and the number recognition rate were improved through performance improvement. Based on the results of field experiments and performance evaluation, performance standards for unmanned two-wheeled vehicle traffic enforcement equipment were prepared, and in the communication protocol, two-wheeled vehicle-related matters were newly composed in the vehicle classification code and violation items to develop standards.

Group Key Assignment Scheme based on Secret Sharing Scheme for Dynamic Swarm Unmanned Systems (동적 군집 무인체계를 위한 비밀분산법 기반의 그룹키 할당 기법)

  • Jongkwan Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.93-100
    • /
    • 2023
  • This paper presents a novel approach for assigning group keys within a dynamic swarm unmanned system environment. In this environment, multiple groups of unmanned systems have the flexibility to merge into a single group or a single unmanned system group can be subdivided into multiple groups. The proposed protocol encompasses two key steps: group key generation and sharing. The responsibility of generating the group key rests solely with the leader node of the group. The group's leader node employs a secret sharing scheme to fragment the group key into multiple fragments, which are subsequently transmitted. Nodes that receive these fragments reconstruct a fresh group key by combining their self-generated secret fragment with the fragment obtained from the leader node. Subsequently, they validate the integrity of the derived group key by employing the hash function. The efficacy of the proposed technique is ascertained through an exhaustive assessment of its security and communication efficiency. This analysis affirms its potential for robust application in forthcoming swarm unmanned system operations scenarios characterized by frequent network group modifications.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Development of the Neural Network Steering Controller for Unmanned electric Vehicle (무인 전기자동차의 신경회로망 조향 제어기 개발)

  • 손석준;김태곤;김정희;류영재;김의선;임영철;이주상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.281-286
    • /
    • 2000
  • This paper describes a lateral guidance system of an unmanned vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in the unmanned vehicle simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the learning pattern, learning itself, and the adequacy of the design controller. A computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. Good results were obtained. Also, the real unmanned electrical vehicle using neural network controller verified good results.

  • PDF