• Title/Summary/Keyword: Unmanned order system

Search Result 327, Processing Time 0.02 seconds

Development of Operational Requirements of Remote Control Interfaces for Unmanned Ground Combat Vehicles (지상무인전투차량 원격제어 인터페이스 운용 요구사항 개발)

  • Jo, Seongsik;Baik, Seungwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The use of unmanned combat systems is of interest for future battlefield. Advanced techniques are being actively studied to build fully autonomous unmanned systems. However, there are technical, ethical and legal limitations for the fully autonomous unmanned combat systems. In addition, a remote controlled system is necessary so far in order to prepare for situations where fully autonomous unmanned systems fail to function properly. Thus, a procedure of developing operational requirements in system level is proposed and interface requirements of unmanned combat vehicles for remote control are described in this study.

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

A Study on the Combination of Manned-unmanned Teaming for Future Ground Combat Victory

  • Sung-Kwon Kim;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.159-164
    • /
    • 2023
  • This study is for manned-unmanned teaming battles for future ground combat victories. The composition of the study is as follows. The introduction to Chapter 1 presents the necessity of this study from a macro perspective, Chapter 2, the review of the complex combat system for both manned and unmanned introduced the paradigm shift of the future battlefield and the cyber area that is superconnected to the network in future wars. Chapter 3 analyzed the combined combat system of manned-unmanned teaming in advanced military countries through the cases of the United States and Israel. In Chapter 4, after discussing the direction of the development of combat performance of the Korean Army, was concluded in Chapter 5. In other words, the purpose of this study is that as the concept of fighting artificial intelligence robots and military innovation changes, the method of performing battles must be changed in order for our military to win the battle.

Compensating Transmission Delay and Packet Loss in Networked Control System for Unmanned Underwater Vehicle (무인잠수정 제어시스템을 위한 네트워크 전송지연 및 패킷분실 보상기법)

  • Yang, Inseok;Kang, Sun-Young;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • Transmission delay and packet loss induced by a communication network can degrade the control performance and, even make the system unstable. This paper presents a method for compensating transmission delay and packet loss in a networked control system for unmanned underwater vehicle. The proposed method is based on Lagrange interpolation in order to satisfy the requirements of simplicity and model-independency. In this work, the lost/delayed data are estimated in real time by only using the past data without requiring any mathematical model of the controlled system. Consequently, the proposed method can be implemented independent of the controlled system, and also it can achieve fast and accurate compensation performance. The performance of the proposed technique is evaluated by numerical simulations with an unmanned underwater vehicle.

Design of Real-time Video Acquisition for Control of Unmanned Aerial Vehicle

  • Jeong, Min-Hwa
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • In this paper, we analyze the delay phenomenon that can occur when controlling an unmanned aerial vehicle using a camera and describe a solution to solve the phenomenon. The group of pictures (GOP) value is changed in order to reduce the delay according to the frame data size that can occur in the moving image data transmission. The appropriate GOP values were determined through experimental data accumulation and validated through camera self-test, system integration laboratory (SIL) verification test and system integration test.

On the Derivation of Safety Requirements and Specifications based Integrated System Operation Scenario for the Development of Unmanned Courier Storage Device Platform in Urban Areas

  • Lee, Sang Min;Park, Jae Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.103-111
    • /
    • 2021
  • In modern society, digital lifestyles are spreading to minimize contact with people and to receive contactless information. The spread trend has established an unmanned distribution system in which transactions through contactless technologies such as kiosks and chatbots are activated in face-to-face transactions with sellers and consumers. In order to streamline logistics supply worldwide, digital new deal based joint logistics hubs, unmanned courier storage platforms, and fresh logistics based last mile services have been developed into unmanned logistics systems, focusing on the intelligent logistics system automation process. Unmanned courier storage system installed in urban areas and home to daily logistics where volume is concentrated are provided with fresh logistics services through cold chain and receiving freights in contactless environments. Development is also underway to minimize safety accidents caused by courier services, such as managing various information based on the integrated control system. This paper defines the concept of integrated operation for the development of a platform for contactless unmanned courier storage device developed into next-generation logistics system. In addition, we intend to develop systems engineering-based output for deriving safety requirements and specifications by identifying risk sources that may occur in the operational scenario. Therefore, the goal is to establish a foundation for safety and reliability between interfaces of logistics systems to be installed in apartment and subway station environments that want to provide unmanned logistics services to various consumers.

Design of Automatic Inspection System for Maintenance of Unmanned Monitoring Facility (무인감시설비 유지보수를 위한 자동점검시스템 설계)

  • Moon, Chaeyoung;Kim, Semin;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.515-517
    • /
    • 2018
  • Access to public facilities such as substations, dams and railway facilities is strictly controlled, and unmanned surveillance equipment has been introduced and operated recently due to the development of IT technology and the government's cost reduction policy. However, if an unmanned surveillance system is broken, surveillance space, information leakage caused by intruders, and damage to facilities may occur. Also, it is necessary to check periodical visit by the manager in order to check the surveillance facilities, which causes additional management costs. In order to solve this problem, we designed a system to check the operation status of the unmanned monitoring facility in real time, attempt to recover automatically when a problem occurs, and notify the administrator of the problem. The designed system consists of an NVR that receives and judges information such as image, sound, and lighting condition, and a control device that detects and restores the state of the unmanned monitoring facility. The system proposed in this paper is expected to contribute to the improvement of the economic efficiency due to the minimization of surveillance space due to the failure of the unmanned monitoring facility and the reduction of the inspection cost.

  • PDF

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System (초음파 위치인식 시스템을 이용한 차량의 무인주행)

  • Kim, Su-Yong;Lee, Jung-Min;Lee, Dong-Hwal;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.