• Title/Summary/Keyword: Unmanned helicopter

Search Result 116, Processing Time 0.025 seconds

Design Update of Transition Scheduler for Smart UAV (스마트 무인기의 천이 스케줄러 설계개선)

  • Kang, Y.S.;Yoo, C.S.;Kim, Y.S.;An, S.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV (헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Conceptual Design of a Ducted Fan for Helicopter Anti-Torque System

  • Hwang, Chang-Jeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • Ducted fans have advantages in noise as well as operational safety aspects compared to conventional tail rotors and are used as an anti-torque system for various classes of helicopters. The final goal of this study is to develop a ducted fan anti-torque system which can replace conventional tail rotors of existing helicopters to achieve safety enhancement and low noise level. In this paper, a conceptual design process and the results are described. Initially, the design requirement and the design parameter characteristics are analysed, and then initial sizing and configuration design are performed. There are several configuration changes due to specific technical reasons in each case. Finally, the required power and the pitch link load are predicted as an initial estimation. The conceptual design technique for the ducted fan in this study can be easily applied to the design of other ducted fans such as the lift fan for unmanned aerial vehicle.

Efficacy of Foliar Herbicide Treatment by Unmanned Helicopter under Water-Seeded Rice Cultivation (벼 담수표면산파 재배에서 무인헬기를 이용한 제초제 경엽처리 효과)

  • Seong, Deok-Gyeong;Bea, Sung-Mun;Kim, Young-Gwang;Cho, Yong-Cho;Lee, Sang-Dae;Shim, Sang-In;Chung, Jung-Sung
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.323-328
    • /
    • 2014
  • This study was conducted to find out the effects of aerial application by unmanned helicopter (AAUH) on controlling weeds under water-seeded rice cultivation. Foliar herbicide (bentazone sodium + fenoxaprop-P-ethyl) was applied with diluted 8-times (standard concentration pest control) as AAUH. Foliar herbicide treatment with standard and two times amount were little damage, but with more than three times amount showed great damage in rice growth. Six annual and two perennial weeds were major weeds occurred in the experimental paddy field. On foliar herbicide treatment 25 days after direct seeding, AAUH showed high control values against weeds (96.3% for annual weeds and 99.8% for perennial weeds). There was no significant difference in weed control values between AAUH and conventional application. There was no spray injury against rice plants with aerial application. In the experiment for good spray timing (15, 20 and 25 days after direct seeding) 15 days showed highest weed control values with 98.5% to annual weeds and 99.8% to perennial weeds and no spray injury.

Effect of sowing italian ryegrass using unmanned helicopter under the established rice field on labour saving and rice growth

  • Kim, Young-Gwang;Seong, Deok-Gyeong;Nam, Jin-Woo;Choi, Young-Jo;Hong, Kwang-Pyo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.268-268
    • /
    • 2017
  • Common sowing method of italian ryegrass (IRG) has been using the backpack seed sprayer (BSS) in Korea. It has weak point including a hard work and a little sowing area. This study was conducted to find out the effects of sowing IRG using unmanned helicopter (UH) under the established rice field. We checked the labour saving of sowing IRG and the growth and yield of rice after using IRG as forage crop. Two sowing implements(using by UH and backpack seed sprayer (BSS)) were tested for the ability of sowing IRG. For proper pretreatment of IRG seeds for aerial sowing using with UH, we tested one-day soaking seeds, iron-coated seeds, coated seeds sold in stores and untreated seeds. Aerial sowing of IRG seeds using UH was tested under the speed 10 km/h and flying altitude 3~4m. We tried to confirm the effects on rice growth in a paddy field after IRG had been used as forage in mid May. In 6 hours of seeding per day, UH had a seeding area of 21.8 hectares, three times wider than BSS. UH had a decrease of about 63 percent of sowing-seed cost in comparison with BSS. In the IRG aerial sowing using UH, coating seeds had the wider sowing width of 5~6 meter than 3~4 meter untreated seeds. Residual dry matter of IRG after using forage had 4.5 ton per hectare and 20 percent of top dry matter. The amount of nitrogen remaining in residual IRG in the soil was 12 kg per hectare, and the other nutrients such as calcium and potassium was incorporated into the soil with less than 10 kg/ha. The rice yield after the harvesting IRG was 5 percent higher than that of rice single cropping. Consequently, IRG sowing using UH was effective in reducing sowing time and sowing cost compared with conventional methods and, it is considered that there is a positive effect on the rice cultivation compared to rice single cropping.

  • PDF

A Study on Visual Servoing Image Information for Stabilization of Line-of-Sight of Unmanned Helicopter (무인헬기의 시선안정화를 위한 시각제어용 영상정보에 관한 연구)

  • 신준영;이현정;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.600-603
    • /
    • 2004
  • UAV (Unmanned Aerial Vehicle) is an aerial vehicle that can accomplish the mission without pilot. UAV was developed for a military purpose such as a reconnaissance in an early stage. Nowadays usage of UAV expands into a various field of civil industry such as a drawing a map, broadcasting, observation of environment. These UAV, need vision system to offer accurate information to person who manages on ground and to control the UAV itself. Especially LOS(Line-of-Sight) system wants to precisely control direction of system which wants to tracking object using vision sensor like an CCD camera, so it is very important in vision system. In this paper, we propose a method to recognize object from image which is acquired from camera mounted on gimbals and offer information of displacement between center of monitor and center of object.

  • PDF

A Development and Verification Process of Auto Generated Code for Fly-By-Wire Helicopter Control Law (Fly-By-Wire 헬리콥터 비행제어법칙 자동생성코드 개발 및 검증 프로세스)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Heo, Jin-Goo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.488-494
    • /
    • 2013
  • The control law design and analysis environment of the FBW helicopter system have been developed using model base design method. The model based design is generally used in a aircraft, unmanned aerial system and automobile as well as rotorcraft development. The model based design provides many advantages such as development risk and schedule reduction using simulation and autocode generation. This paper describes a development of process for verification and validation of auto generated code for FBW helicopter flight control law. And this process is applied for Fly-By-Wire Helicopter Development Project. The results of functional test for auto generated code meet several specific requirements.

GUI S/W Development for Helicopter Simulation (헬리콥터 시뮬레이션용 GUI S/W 개발)

  • Park,Sang-Seon;Lee,Sang-Gi;Lee,Hwan;Ju,Gwang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.88-93
    • /
    • 2003
  • This Paper described the simulation program development for helicopter. In the design of flight control system to accomplish some special missions like UAV, it is important to minimize the execution time obtaining a linear model from nonlinear model that is used for design of controller. The first step for this kind of purpose is to complete a nonlinear model that contains full dynamic characteristics. The second step is to get the trim values that are obtained from the nonlinear model by solving an algebraic equation. And then stability and control derivatives are derived through hovering to forward flight by numerical perturbation that will be used for linear model for a specified flight condition. The software program(HeliSim) is developed by using MATLAB GUI and will provide easy modeling procedure. The suggested method in this paper is much more simpler than any other method like a fully scale helicopter model. The advantage of our suggested method will reduce the computational time due to simple formula to extract a linear model from nonlinear model that will be beneficially used for flight control system of unmanned helicopter by some reduction of computational load.

Support for ARINC 653 Processes over Linux-based Unmanned Aerial Vehicles (리눅스 기반의 무인항공기를 위한 ARINC 653 프로세스 지원)

  • Han, Sang-Hyun;Lee, Sang-Hun;Jin, Hyun-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1056-1060
    • /
    • 2010
  • The software running on avionic systems is required to be highly reliable and productive. Due to these demands, the standard such as ARINC 653 has been suggested, which includes the abstraction of resource partitioning and defines interfaces between avionic operating system and applications. Though there are many manned aerial vehicles employing ARINC 653 based operating systems, Linux-based ARINC 653 for unmanned aerial vehicles has not been studied yet. In this paper, we propose the design of Linux-based ARINC 653 process model and present preliminary implementation. The experiment results present that the implementation is enough to support control software of unmanned helicopter.

The Application of Unmanned Aerial Photograpy for Effective Monitoring of Marine Debris (해안표착물의 효율적인 모니터링을 위한 무선 조정 항공기 촬영기법의 적용)

  • Jang, Seon-Woong;Lee, Seong-Kyu;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2011
  • This study proposed detection method of Marine debris using unmanned aerial photography. For unmanned aerial photography, a RC(Radio Control) helicopter which has good movability and economics was used. To a camera mounting, a gimbal equipment was attached to the bottom of the RC helicopter. The gimbal equipment is very useful because it is not seriously affected by vibration and rolling. In addition, we invented that digital image processing algorithm using Matlab program for detection of marine debris from photographs. Particularly, background subtraction in invented algorithm was applied. As a result, marine debris of a variety of forms from different sand states of coast were reliably detected. In the future, monitoring using proposed method was expected to contribute that the solution to representative problem of monitoring area selecting and estimate the total litter mass over the beach. Moreover, It is considered a greater application possibility to marine environmental observations.