• Title/Summary/Keyword: Unmanned aerial vehicles

Search Result 458, Processing Time 0.025 seconds

Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) are a new and yet constantly developing part of forest inventory studies and vegetation-monitoring fields. Covering large areas, their extensive usage has saved time and money for researchers and conservationists to survey vegetation for various data analyses. Post-processing imaging software has improved the effectiveness of UAVs further by providing 3D models for accurate visualization of the data. We focus on determining the coniferous tree coverage to show the current advantages and disadvantages of the orthorectified 2D and 3D models obtained from the image photogrammetry software, Pix4Dmapper Pro-Non-Commercial. We also examine the methodology used for mapping the study site, additionally investigating the spread of coniferous trees. The collected images were transformed into 2D black and white binary pixel images to calculate the coverage area of coniferous trees in the study site using MATLAB. The research was able to conclude that the 3D model was effective in perceiving the tree composition in the designated site, while the orthorectified 2D map is appropriate for the clear differentiation of coniferous and deciduous trees. In its conclusion, the paper will also be able to show how UAVs could be improved for future usability.

Modeling unmanned aerial vehicle jet ignition wankel engines with CAE/CFD

  • Boretti, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.445-467
    • /
    • 2015
  • The paper presents some details of the CFD modeling of a novel design where jet ignition devices replace the traditional spark plugs for a faster and more complete combustion. The numerical simulations show how the pre-chamber jet ignition in a Wankel engine differs from reciprocating piston engine applications. The jets issuing from the jet ignition pre-chamber have many different speeds in the different directions as the pressure build-up at the trailing edge of the rotating chamber makes extremely fast the ignition of the chamber mixture in the direction of rotation. Conversely it prevents the jet ignition in the opposite direction. Careful positioning along the periphery and design of the connecting pipes and the prechamber volume with the help of CFD simulations permits to achieve extremely fast and complete combustion as impossible with spark plugs. The paper proposes results of CFD simulations of the combustion evolution within a jet ignited Wankel engine rotor, detailing challenges and opportunities of the application, as well as a first assessment of the impact the faster and more complete combustion permitted by jet ignition may have on the performances of Wankel engines for unmanned aerial vehicles applications.

A Study On Flight Vibration Environmental Test of Unmanned Aerial Vehicle using Dual Electric Vibration Exciters (이중 전동식 진동 시험기를 이용한 무인 비행체의 비행진동 환경시험 연구)

  • Jangseob Choi;Dongho Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Analysis of dynamic characteristics and flight vibration test for unmanned aerial vehicles was studied by using dummy test body. The FEM model for dummy test body was supplemented by results of modal and random vibration test. The free end boundary condition to simulate flight environments was made by test setup using bungee cable. Prior to the flight vibration test using a dual electric vibration exciters, the test procedure to calculate quantitative vibration level was studied by using military specification. The actual test was successfully done by using the analysis and pretest results. From the analysis results, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test and to get the response of any point which could not be measured by the test. The results of this study will much contribute to the Test and Evaluation of unmanned aerial vehicles.

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.

Development Technology Trends of Propulsion System in Unmanned Air Vehicles (무인기 추진시스템 개발 기술 동향)

  • Nak-Gon Baek;Juhyun Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

Navigation Performance Analysis Method for Integrated Navigation System of Small Unmanned Aerial Vehicles

  • Oh, Jeonghwan;Won, Daehan;Lee, Dongjin;Kim, Doyoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • Currently, the operation of unmanned aerial vehicle (UAV) is regulated to be able to fly only within the visible range, but in recent years, the needs for operation in the invisible area, in the urban area and at night have increased. In order to operate UAVs in the invisible area, at night, and in the urban area, a flight path for UAVs must be prepared like those operated by manned aircraft, and for this, it is necessary to establish an unmanned aircraft system traffic management (UTM). In order to establish the UTM, information on the minimum separation distance to prevent collisions with UAVs and buildings is required, and accordingly, information on the navigation performance of UAVs is required. In order to analyze the navigation performance of an UAV, total system error (TSE), which is the difference between the planned flight path and the actual location of the UAV, is required. If the collected data are insufficient and classification according to integrity, independence, and direction is not performed, accurate navigation performance is not derived. In this paper, propose a navigation performance analysis method of UAV that is derived TSE using flight data and modeled with normal distribution, analyze performance.

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

Certification Criteria and Safety Assessment for High Altitude Long Endurance Unmanned Aerial Vehicle (장기체공 무인항공기 기술기준 및 안전성 평가 연구)

  • Ko, Joon Soo;Kim, Kyungmok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.7-13
    • /
    • 2016
  • Multi disciplinary approach for aerodynamics, structure, propulsion, and flight control system is necessary to develop High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAV). Various HALE UAV development trends are surveyed to understand their operational requirements. Separating the UAV Take Off Weight by 150kg, Airworthiness implementation direction for HALE UAV is studied under the current Airworthiness regulations. NATO STANAG 4671 and STANAG 4703 Airworthiness certification criteria are analyzed, and their applicability was proposed for future HALE UAV development. In addition, minimization of the risk for UAV is studied by considering probability of cumulative catastrophic failure for HALE UAV. This Hazard Risk Index can support the future UAV Airworthiness Certification Criteria.

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF