DOI QR코드

DOI QR Code

Development Technology Trends of Propulsion System in Unmanned Air Vehicles

무인기 추진시스템 개발 기술 동향

  • Received : 2024.01.05
  • Accepted : 2024.04.01
  • Published : 2024.04.30

Abstract

The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

무인기에 적용되는 다양한 추진기관 기술은 항공의 중요한 개발 방향 중의 하나인 무인기의 비행 성능에 크게 관련이 있다. 본 논문에서는 무인기의 내연기관(왕복엔진, 로타리엔진, 가스터빈엔진), 하이브리드 및 순수한 전기 추진시스템에 대하여 조사를 수행하였다. 특히 이러한 추진기관들의 분류, 작동사이클, 특성 및 주요 기술들에 대하여 제시하였다. 그러므로 미래의 무인기 추진시스템의 개발 틀, 종합적인 예측 및 다양한 비교를 정립하는데 도움을 줄 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 방위사업청의 선행핵심기술 연구개발과제 중 "중고도 성능개량형 터보프롭 엔진 기술"과제의 지원에 의해 수행되었으며, 이에 감사드립니다.

References

  1. S. C. Oban, and T. Oktay, "Unmanned Aerial Vehicles (UAVs) According to Engine Type," 2(2), pp. 177-184, 2018.
  2. J. Schomann, "Hybrid-Electric Propulsion Systems for Small Unmanned Aircraft," Technische Universitat Munchen, 2014 
  3. B. Zhang, Z. Song, F. Zhao, and C. Liu, "Overview of Propulsion Systems for Unmanned Aerial Vehicles," Energies 2022, 15, 455, 2022. 
  4. L. Cwojdinski, and M. Adamski, "Power Units and Power Supply Systems in UAV," Aviation, vol. 18, no. 1, pp. 1-8, 2014.
  5. Y. Qiao, X. Duan, K. Huang, Y. Song, and J. Qian, "Scavenging Ports' Optimal Design of a Two-stroke Small Aeroengine based on the Benson/bradham Model," Energies, vol. 11, no. 10, 2018.
  6. ASHWIN RAVI , "Uav Power Plant Performance Evaluation, " Bachelor of Science in Mechanical Engineerin, Anna University, pp. 50-53, 2010. 
  7. DUTCZAK J. "Heavy fuel engines (HFE)," Combustion Engines. pp. 26-35, 2015. 
  8. F. V. Bracco, and W. A. Sirignano, "Theoretical Analysis of Wankel Engine Combustion," Combustion of Science and Technology, vol. 7, no. 3, 1973. 
  9. Y. Qiao, L. Lin, W. Zhong, and Huang, "Investigation on the Performance Characteristics of 2-stroke Heavy Fuel Light Aeroengine (2SHFLA) with Different Fuel Injection Systems: Modeling and Comparative Simulation," Energies 2020, 13, 5136, 2020.
  10. A. Gong, J. L. Palmer, and D. Verstraete, "Flight Test of a Fuel-Cell/Battery/Supercapacitor Triple Hybrid UAV Propulsion System," in 31st Congress of the International Council of the Aeronautical Sciences, September, 2018.
  11. K. N. Mobariz, A. Youssef, and M. Abdel-Rahman, "Long Endurance Hybrid Fuel cell-battery Powered UAV," World Journal of Modelling and Simulation, vol. 11, no. 1, pp. 69-80, 2015
  12. B. D. Safyanu, M. N. Abdullah, and Z. Omar, "Review of Power Device for Solar-powered Aircraft Applications," Journal of Aerospace Technology and Management, vol. 11, 2019
  13. M. N. Boukoberine, Z. Zhou, M. Benbouzid, "A Critical Review on Unmanned Aerial Vehicles Power Supply and Energy Management: Solutions, Strategies and Prospects," Applied Energy, vol. 255, 2019
  14. S. Hwang, S. Kim, and Y. Lee, "Stratosphere Flight Test of the Solar-Powered High Alitude UAV," Proc. of 2016 SASE Fall Conference, pp. 3-4, 2016.
  15. J. Schomann, "Hybrid-Electric Propulsion Systems for Small Unmanned Aircraft," Technische Universitat Munchen, pp. 1-56, 2014.
  16. S. Sokolsky, and J. Major, "Advanced Combat Engine Militarization and Commercialization Study," in Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), pp. 1-13, 2019.