• 제목/요약/키워드: Unmanned aerial application

검색결과 193건 처리시간 0.029초

UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용 (Application of Deep Learning Method for Real-Time Traffic Analysis using UAV)

  • 박홍련;변성훈;이한성
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.353-361
    • /
    • 2020
  • 급격한 도시화로 인해 출퇴근 시간의 차량 정체, 상시 정체지역 발생 등 다양한 교통문제들이 발생하고 있다. 이러한 교통문제들을 해결하기 위해서는 신속·정확한 교통량 예측 및 분석이 필요하다. ITS (Intelligent Transportation System)는 최신 ICT (Information and Communications Technology) 기술들을 활용하여 최적의 교통관리를 수행하는 시스템이며, 다양한 기법을 통해 신속·정확한 교통량을 분석하기 위한 많은 연구가 수행 되었다. 본 연구에서는 높은 정확도로 실시간 교통량 분석을 위해 UAV (Unmanned Aerial Vehicle) 동영상을 활용한 딥러닝(deep learning) 기반의 차량탐지기법을 제안하고자 한다. 이를 위해, UAV를 활용하여 다양한 차량이 통행하는 교차로에서 학습 및 검증에 필요한 정사 동영상 촬영을 수행하였으며, 승용차(sedan), 트럭(truck), 버스(bus)로 분류하여 차량을 학습시켰다. 딥러닝 알고리즘은 대표적인 객체탐지 알고리즘 중의 하나인 YOLOv3 (You Only Look Once V3)를 이용하였으며, 실험결과 전체 차량 검출율은 90.21%이며, 정확도와 재현율은 각각 95.10%와 85.79%이다. 본 연구를 통하여, 드론을 이용한 영상으로부터 차량 탐지를 통한 실시간 교통량 분석이 가능함을 확인하였다.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Near-Optimal Collision Avoidance Maneuvers for UAV

  • Han, Su-Cheol;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1999-2004
    • /
    • 2004
  • Collision avoidance for the aircraft can be stated as a problem of maintaining a safe distance between aircrafts in conflict. Optimal collision avoidance problem seeks to minimize the given cost function while simultaneously satisfying the constraints. The cost function can be a function of time or input. This paper addresses the trajectory time-optimization problem for collision avoidance of the unmanned aerial vehicles. The problem is difficult to handle, because it is a two points boundary value problem with dynamic environment. Some simplifying algorithms are used for application in on-line operation. Although there are more complicated problems, by prediction of conflict time and some assumptions, we changed a dynamic environment problem into a static one.

  • PDF

CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 - (Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data -)

  • 박희진;구영모;배영환;오민석;양철오;송명현
    • Journal of Biosystems Engineering
    • /
    • 제36권6호
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

소규모 사구 지역 바람-식생모델 적용성 분석 (Applicability of Wind-Vegetation Model in Small Scale Sand Dunes)

  • 최석근;최재완;박상욱;정성혁;이승기
    • 한국측량학회지
    • /
    • 제35권6호
    • /
    • pp.545-552
    • /
    • 2017
  • 풍성사구는 지표, 바람과 식생간의 상호 작용에 의해 유지${\cdot}$발달되는 대표적인 사구이다. 이러한 사구의 변형을 예측하는 모형을 개발하는 것은 토지 황폐화와 같은 지형 경광의 이해와 관리의 효율성을 높이는데 매우 중요하다. 하지만 기존의 모형에서는 사구의 장기 거동에 대한 연구와 이를 이용한 실제 지형 적용에 관한 연구는 미비한 실정이다. 따라서, 본 연구에서는 식생을 고려한 바람-식생 모형을 실제 지형에 적용하고, 장기 거동을 실제 데이터와 비교하여 바람-식생 모형의 적용성을 분석하였다. 분석을 통해서 바람-식생 모형과 무인항공기 데이터를 이용하는 방법이 경계면을 제외하고 실제 사구지형의 변화와 최대 1m 내외의 오차로 나타나 장기 거동 분석에 효과적인것을 알 수 있었다.

무인항공기 대응체계 도입 방안 (Application of the Small UAV Defense System)

  • 박제홍
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.145-152
    • /
    • 2017
  • 쉽게 조종이 가능한 소형 무인기가 빠르게 보급되고, 무인기 산업이 빠른 속도로 성장함에 따라 공중 보안(airspace security)에 취약한 보안/전략 시설의 보안성 확보에 무인기가 새로운 위협이 되고 있다. 이러한 위협이 다양해지면서, 위협에 대응하는 무인기 대응체계 개발에 대한 연구/개발도 빠르게 연구되고 있다. 본 논문에서는 소형 무인기 보급에 따른 여러 가지 위협 및 사고 사례를 기술하고, 무인기 개발 및 운용방식에 따라 맞춤형으로 개발되고 있는 무인기 대응체계 개발 동향을 무인기 대응체계의 개념, 탐지/식별방안 및 제압/대응방안으로 나누어 기술한 후, 드론을 포함한 소형 무인기 대중화에 따른 부작용을 최소화할 수 있는 기술적, 제도적 대안을 제안하고자 한다.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

칼만필터를 이용한 농용 균평헬리콥터의 살포비행자세 평가 (Evaluation of Spray Flight Attitude for Agricultural Roll-balanced Helicopter using Kalman Filter)

  • 박희진;구영모
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.342-351
    • /
    • 2012
  • Purpose: Aerial spraying with an agricultural unmanned helicopter became a new paradigm in the agricultural practice. Laterally tilting behavior of a conventional agricultural helicopter, resulting in the biased down-wash and uneven spray deposit is a physically intrinsic phenomenon while hovering and cruise flights. Authors studied and developed a roll-balanced agricultural helicopter with a raised pylon tail rotor system. In this study, the attitude of the roll-balanced helicopter was determined using the Kalman filter algorithm, and the quality of roll balancing of a bare-airframe helicopter was evaluated. Methods: Instantaneous attitudes were estimated using the advantage of gyroscope, followed by the long term correction and prediction using accelerometer data for the advantage of convergence. The attitudes of the fuselage were calculated by applying the Kalman filter algorithm. The spraying maneuver of the helicopter was performed at a field of 50 m long, and the attitude data were acquired and evaluated. Results: The determination of attitude using the inertial measurement unit(IMU) and Kalman filter was reliable and practical. The intrinsic attitude of the developed helicopter was stable and roll-balanced. The deviation of roll angle was ${\pm}6.3^{\circ}$ with an average of $0^{\circ}$, referring to roll-balanced. Conclusions: Handling quality of the roll attitude determined to be steadily balanced. The balancing behavior of the developed helicopter would result in an even spray pattern during aerial application.

무인항공기용 150W급 연료전지 동력원 개발 및 실증 (Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV))

  • 양철남;김양도
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle

  • Na, Sang-Il;Park, Chan-Won;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.469-479
    • /
    • 2016
  • Kimchi cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. In particular Kimchi cabbages in a highland area are very sensitive to the fluctuations in supply and demand. Yield variability due to growth conditions dictates the market fluctuations of Kimchi cabbage price. This study was carried out to understand the distribution of the highland Kimchi cabbage growth status in Anbandeok. Anbandeok area in Gangneung, Gangwon-do, Korea is one of the main producing districts of highland Kimchi cabbage. The highland Kimchi cabbage status map of each growth factor was obtained from unmanned aerial vehicle (UAV) imagery and field survey data. Six status maps include UAVRGB image map, normalized difference vegetation index (NDVI) distribution/anomaly map, Crop distribution map, Planting/Harvest distribution map, Growth parameter map and Growth disorder map. As a result, the highland Kimchi cabbage status maps from May 31 to Sep. 6 in 2016 were presented to show spatial variability in the field. The benefits of the highland Kimchi cabbage status map can be summarized as follows: crop growth monitoring, reference for field observations and survey, the relative comparison of the growth condition in field scale, evaluation of growth in comparison of average year, change detection of annual crops or planting areas, abandoned fields monitoring, prediction of harvest season etc.