• 제목/요약/키워드: Unmanned Systems

Search Result 873, Processing Time 0.04 seconds

Efficient Traffic Lights Detection and Signal Recognition in Moving Image (동영상에서 교통 신호등 위치 검출 및 신호인식 기법)

  • Oh, Seong;Kim, Jin-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.717-719
    • /
    • 2015
  • The research and development of the unmanned vehicle is being carried out actively in domestic and foreign countries. The research is being carried out to provide various services so that the weakness of system such as conventional 2D-based navigation systems can be supplemented and the driving can be safer. This paper suggests the method that enables real-time video processing in more efficient way by realizing the location detection and signal recognition technique of traffic signals in video. In order to overcome the limit of conventional methods that have a difficulty in analyzing the signal as it is sensitive to brightness change, the proposed method realizes the program that grasps the depth data in front of the vehicle using video processing, analyzes the signal by detecting traffic signal and estimates color components of traffic signal in front and the distance between traffic signal and the vehicle.

  • PDF

Assessment of Flight Control Performance based on the Ground Test Results of Smart UAV (스마트 무인기의 지상시험을 통한 비행제어 성능분석)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Kim, Yu-Shin;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tilt-rotor Smart UAV(Unmanned Air Vehicle) has been developed by KARI(Korea Aerospace Research Institute) for civil purposes. In order to prove the reliabilities of total system of Smart UAV, the series of ground tests were performed including system interface test, aircraft HILS(Hardware In the Loop Simulation) Test, ground power test, 4-DOF (Degrees of Freedom)rig test, and tethered hover test. Many unexpected problems occurred at each ground test. With clearing these problems, the total Smart UAV systems were matured and the airworthiness was proven enough. After complete of additional ground test proposed by FRRB(Flight Readiness Review Board), the first flight test will be performed in this year. This paper presents the procedures and the analysis results of the ground tests for the tilt-rotor Smart UAV.

Underwater Docking of an AUV Using a Visual Servo Controller (비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

THE CHARACTERISTIC OF SOLAR CELL FOR GUARD LAMP (보안등에 적용하기 위한 태양전지의 특성 분석)

  • Kang Byung-Bog;Ji Woon-Seok;Lim Jung-Yeol;Kim Seok-Jong;Yu Chang-Woo;Cha In-Su
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1489-1491
    • /
    • 2004
  • A guard lamp system has been installed at the PV positive center, located at Gwangju in Korea. Digital environment that is represented to internet is displacing business way of industry and business achievement way with the fast speed being giving great change on life whole, improve existence business process utilizing internet and Web connection technology, information superhighway to tradition industrialist manufacture and e-transformation's propulsion that wish to maximize productivity and administration efficiency is spread vigorously. In this paper, we wish to accomplish generation equipment's heighten stability and believability through remote monitoring and control of guard lamp system. This paper describes the design of the monitoring system for the sensing data and indirect controlling of the guard lamp system. Most of the conventional monitoring systems depend on the special hardware and software. The essential design of monitoring system is to provide the convenience for the user and the portability for the system. In order for the system to fulfill its requirements, it was designed using Labview GUI facility based on the Windows 2000 environment of IBM PC compatible and Add-oncard based on the TCP/IP Protocol. Advantage of the monitoring system are a personnel expenses curtailment effect, of the place restriction and unmanned system of the generationplants, etc..

  • PDF

Power Charge Scheduling and Charge-Ready Battery Allocation Algorithms for Real-Time Drones Services (실시간 드론 서비스를 위한 전원 충전 스케쥴링과 충전 배터리 할당 알고리즘)

  • Tajrian, Mehedi;Kim, Jai-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.277-286
    • /
    • 2019
  • The Unmanned Aerial Vehicle (UAV) is one of the most precious inventions of Internet of things (IOT). UAV faces the necessity to charge battery or replace battery from the charging stations during or between services. We propose scheduling algorithms for drone power charging (SADPC). The basic idea of algorithm is considering both a deadline (for increasing deadline miss ratio) and a charging time (for decreasing waiting time) to decide priority on charging station among drones. Our simulation results show that our power charging algorithm for drones are efficient in terms of the deadline miss ratio as well as the waiting time in general in compare to other conventional algorithms (EDF or SJF). Also, we can choose proper algorithms for battery charge scheduling and charge ready battery allocation according to system parameters and user requirements based on our simulation.

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.

From Airborne Via Drones to Space-Borne Polarimetric- Interferometric SAR Environmental Stress- Change Monitoring ? Comparative Assessment of Applications

  • Boerner, Wolfgang-Martin;Sato, Motoyuki;Yamaguchi, Yoshio;Yamada, Hiroyoshi;Moon, Woo-Il;Ferro-Famil, Laurent;Pottier, Eric;Reigber, Andreas;Cloude, Shane R.;Moreira, Alberto;Lukowski, Tom;Touzi, Ridha
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1433-1435
    • /
    • 2003
  • Very decisive progress was made in advancing fundamental POL-IN-SAR theory and algorithm development during the past decade. This was accomplished with the aid of airborne & shuttle platforms supporting single -to-multi-band multi-modal POL-SAR and also some POL-IN-SAR sensor systems, which will be compared and assessed with the aim of establishing the hitherto not completed but required missions such as tomographic and holographic imaging. Because the operation of airborne test-beds is extremely expensive, aircraft platforms are not suited for routine monitoring missions which is better accomplished with the use drones or UAVs. Such unmanned aerial vehicles were developed for defense applications, however lacking the sophistic ation of implementing advanced forefront POL-IN-SAR technology. This shortcoming will be thoroughly scrutinized resulting in the finding that we do now need to develop most rapidly POL-IN-SAR drone-platform technology especially for environmental stress-change monitoring with a great variance of applications beginning with flood, bush/forest-fire to tectonic-stress (earth-quake to volcanic eruptions) for real-short-time hazard mitigation. However, for routine global monitoring purposes of the terrestrial covers neither airborne sensor implementation - aircraft and/or drones - are sufficient; and there -fore multi-modal and multi-band space-borne POL-IN-SAR space-shuttle and satellite sensor technology needs to be further advanced at a much more rapid phase. The existing ENVISAT with the forthcoming ALOSPALSAR, RADARSAT-2, and the TERRASAT will be compared, demonstrating that at this phase of development the fully polarimetric and polarimetric-interferometric modes of operation must be viewed and treated as preliminary algorithm verification support modes and at this phase of development are still not to be viewed as routine modes.

  • PDF

Precision Forestry Using Remote Sensing Techniques: Opportunities and Limitations of Remote Sensing Application in Forestry (원격탐사 기술의 국내 정밀 임업 가능성 검토: 임업분야의 원격탐사 적용사례 분석을 중심으로)

  • Woo, Heesung;Cho, Seungwan;Jung, Geonhwi;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1067-1082
    • /
    • 2019
  • This review paper presents a review of evidence on systems and technologies for recent remote sensing techniques which were applied into forest and forest related sectors. The paper reviewed remote sensing techniques that will have, or already having, a substantial impact on improving data quality of forest inventory and forest management and planning. The aim of this review is to identify, categorize and discuss Korean and international sources published primarily in the last decades. The focus on remote sensing and ICT technologies examines issues related to their opportunities, limitation, use and impact on the forestry. More specifically, this literature review has focused on laser scanning, satellite imagery, and Unmanned aerial vehicles (UAV) utilization in forest management and inventory analysis.

Modified Gaussian Filter Algorithm using Quadtree Segmentation in AWGN Environment (AWGN 환경에서 쿼드트리 분할을 사용한 변형된 가우시안 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1176-1182
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, automation, and unmanned work are progressing in various fields, and the importance of image processing, which is the basis of AI object recognition, is increasing. In particular, in systems that require detailed data processing, noise removal is used as a preprocessing step, but the existing algorithm does not consider the noise level of the image, so it has the disadvantage of blurring in the filtering process. Therefore, in this paper, we propose a modified Gaussian filter that determines the weight by determining the noise level of the image. The proposed algorithm obtains the noise estimate for the AWGN of the image using quadtree segmentation, determines the Gaussian weight and the pixel weight, and obtains the final output by convolution with the local mask. To evaluate the proposed algorithm, it was simulated compared to the existing method, and superior performance was confirmed compared to the existing method.

A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle

  • Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4123-4141
    • /
    • 2019
  • Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.