• Title/Summary/Keyword: Unmanned Surface Vehicle (USV)

Search Result 55, Processing Time 0.025 seconds

Mission planning and performance verification of an unmanned surface vehicle using a genetic algorithm

  • Park, Jihoon;Kim, Sukkeun;Noh, Geemoon;Kim, Hyeongmin;Lee, Daewoo;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.575-584
    • /
    • 2021
  • This study contains the process of developing a Mission Planning System (MPS) of an USV that can be applied in real situations and verifying them through HILS. In this study, we set the scenario of a single USV with limited operating time. Since the USV may not perform some missions due to the limited operating time, an objective function was defined to maximize the Mission Achievement Rate (MAR). We used a genetic algorithm to solve the problem model, and proposed a method using a 3-D population. The simulation showed that the probability of deriving the global optimal solution of the mission planning algorithm was 96.6% and the computation time was 1.6 s. Furthermore, USV showed it performs the mission according to the results of the MPS. We expect that the MPS developed in this study can be applied to the real environment where USV performs missions with limited time conditions.

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.

Dynamic Window Approach with path-following for Unmanned Surface Vehicle based on Reinforcement Learning (무인수상정 경로점 추종을 위한 강화학습 기반 Dynamic Window Approach)

  • Heo, Jinyeong;Ha, Jeesoo;Lee, Junsik;Ryu, Jaekwan;Kwon, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • Recently, autonomous navigation technology is actively being developed due to the increasing demand of an unmanned surface vehicle(USV). Local planning is essential for the USV to safely reach its destination along paths. the dynamic window approach(DWA) algorithm is a well-known navigation scheme as a local path planning. However, the existing DWA algorithm does not consider path line tracking, and the fixed weight coefficient of the evaluation function, which is a core part, cannot provide flexible path planning for all situations. Therefore, in this paper, we propose a new DWA algorithm that can follow path lines in all situations. Fixed weight coefficients were trained using reinforcement learning(RL) which has been actively studied recently. We implemented the simulation and compared the existing DWA algorithm with the DWA algorithm proposed in this paper. As a result, we confirmed the effectiveness of the proposed algorithm.

A Study for Optimization Methodology of Unmanned System Architecture for Mine Countermeasure Based on Effectiveness (효과기반의 대기뢰전 무인화 체계 최적화 방안 연구)

  • Hong, Sungpyo;Yoon, Seonil;Choi, Bongwan;Oh, Hyunseung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • The capability and cost effectiveness of UUV and USV bring to underwater survey, target detection and identification operations have been widely demonstrated and accepted in recent years. Future USV systems may deploy UUVs to gain the advantage of higher area coverage rates through multiple and simultaneous operations. In this paper, we present an architecture of USV and UUV for mine countermeasure with results of measures on effectiveness.

Unmanned Surface Vehicle for Collecting Marine Debris (쓰레기 수거용 무인 수상로봇)

  • Oh, Myung Hoon;Kim, Jea Heung;Kim, Hyeon Min;Shin, Dong A;Kim, Dong Hun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.61-62
    • /
    • 2015
  • This study presents a movable USV (Unmanned Surface Vehicle) based on Micro Controller. Recently, Micro Controller has widely used in application programming such as industry and education application. In particular, Robot is capable of collecting Marine Debris in any sea area is needed so We propose USV used IP camera for automatic driving, distance detection to control movement of USV in order to prevent of collision based on Arduino. Also, Surrounding situation taken by IP camera can be transmitted to monitor and smartphone.

  • PDF

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model (구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘)

  • Seong-Jin Ahn;Mooncheol Won;Sun Young Kim;Hansol Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.

Emergency Mode Algorithm Considering Remote Operation/Control and Autonomous Level of Unmanned Surface Vehicle (무인수상정에서의 원격운용통제 및 자율수준을 고려한 비상모드 알고리즘)

  • Youn, Jong-Taek;Kim, Yongi;Baik, Jae Woong;Lim, Jae Hyun;Yu, Chan-Woo;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.319-330
    • /
    • 2017
  • In remote USV (Unmanned Surface Vehicle) maritime operation, the remote operation and control technic and autonomous control technic is required and the emergency mode algorithm is needed certainly for sailing and accomplishing various surveillance, reconnaissance, and underwater search missions of USV. In this paper, we review the countermeasures in emergency situation of the existing USV system (Barracuda) and propose the emergency mode algorithm considering the operation and control, and autonomous control level for the stable USV operation in case of emergency. We analyzed the autonomous control level in view of the mission complexity and environmental difficulty, and human interface, and verified the performance of the autonomous control level when we apply four emergency mode algorithms. It is expected that more stable and reliable operation and cotrol are possible if the proposed algorithm is applied to the environments requiring the various multi-mission USV sailing and mission achievement.

Research on Reservoir Bathymetry using USV (수상 드론을 활용한 저수지 수심측량에 관한 연구)

  • Chang-Bong Kim;Young-Joo Kim;Dong-Chul Shin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • In this study, a USV(Unmanned Surface Vehicle) equipped with high-accuracy DGPS(Differential GPS) and single-beam echo sounder was developed. The depth of the reservoir was measured using a USV and a GCS(Ground Control System). A 3D mapping drawing was created using the commercial software ReefMaster. By using USV, the accuracy and efficiency of work was improved. Depth surveying, which was difficult with human resources, is performed using automatic navigation and the volume of the reservoir was calculated. Using 3D mapping drawing, we were able to conduct a detailed investigation of reservoir dredging and ecological environment. It is also expected to be effective in identifying environmental issues.

A Study on the Conceptual Design of an Unmanned Surface Vehicle(USV) for the Korean Navy (한국형 무인 경비정(USV)의 개념설계에 관한 연구)

  • Boo Sung Youn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.59-68
    • /
    • 2004
  • Unmanned surface vehicles(USVs) have been developed for special operations in foreign navies. These will be employed to conduct critical missions including inspection, coast guard, ISR, fire protection, precision strike, mine interception warfare and antisubmarine warfare. It is also known the USVs will be deployed at the front line of the network-centric warfare to replace the manned naval operations. The unmanned operation can, thus, minimize unnecessary risk to personnel and enhance the success probability for the imposed mission. In this research, the USVs which are under operation and development in foreign navies are investigated. Based on this, an USV with $7\~10m$ of length and 10ton of weight for the Korean Navy which can be deployed near the Northern Limit Line(NLL), is proposed.

Development of the SONAR System for an Unmanned Surface Vehicle (무인수상정 탑재 소나시스템 개발)

  • Bae, Ho Seuk;Kim, Wan-Jin;Kim, Woo-Shik;Choi, Sang-Moon;Ahn, Jin-Hyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.358-368
    • /
    • 2015
  • Recently, unmanned systems are largely utilized in various fields due to the persistency and the least operational risk and an unmanned surface vehicle(USV) is the one of the representative application in the naval field. To assign multiple roles to an USV, we developed a sonar system which consists of a forward detecting sonar for the long-range detection, a downward detecting sonar for the small target scan and identification, and a strut type body for mounting sonar systems. In this paper, we described the developed sonar system for USV and the sea test results for verifying system performance. The test results showed that the developed sonar system was able to detect the underwater target about several kilometers away and could recognize a small object at the downside of the sonar system. We expect that the developed sonar system will be easily applied to other unmanned platforms without serious consideration.