• Title/Summary/Keyword: Unmanned Quad-rotor

Search Result 23, Processing Time 0.019 seconds

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Safe landing control of unmanned Quad-rotor Emergency Procedures (긴급 상황에 대비한 무인 쿼드로터의 안전 착륙 제어)

  • Baek, Seung-Jun;Park, Jong-Ho;Ryu, Ji-Hyoung;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2335-2342
    • /
    • 2014
  • If you want to use the unmanned quad rotor for emergency information provision and information about the traffic situation of real-time and moving information is included in the car to help in emergency vehicle operation of the city and in the distribution future innovation the need to consider to have enough safety of the use of silent quad rotor. Therefore, in this study, the unmanned quad rotor system research of safe landing control from the center for the improvement of safety of unmanned quad rotor system you have a motor of four, has taken a good structural balance system based on the dynamic model and motion considering the nonlinear characteristics, and attempts to proceed via non-linearity and system disturbances, tough Fuzzy controller, and analyzed through a computer simulation result.

First Principle Approach to Modeling of Primitive Quad Rotor

  • Sudiyanto, Tata;Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.148-160
    • /
    • 2009
  • By the development of recent technology, a new variant of rotorcrafts having four rotors start drawing attention from aerial-robotics engineers more than before. Its potential spans from just being control device test bed to performing difficult task such as carrying surveillance device to unreachable places. In this regards, modeling a quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor aerial vehicle. A first principle approach is considered for deriving the model based on Euler-Newton equations of motion. The result of the modeling is a simulation platform that is expected to acceptably predict the dynamic behavior of the quad-rotor in various flight conditions. Linear models associated with different flight condition can be extracted for the purpose of control synthesis.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

Design and Control of a Quad-Rotor (쿼드로터 비행체의 설계 및 제어)

  • Shim, Sanghyun;Kim, Ji-Chul;Yang, Sungwook;Cheon, Dong-Ik;Lee, Sangchul;Oh, Hwa-Suk;Kang, Min-Young;Keum, Dong-Kyo
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Quad-rotor is one kind of a rotorcraft in Unmanned Aerial Vehicle (UAV), which consists of four rotors in total and fixed-pitch blades located at the four corners. This vehicle is emerging as popular platform for UAV research due to the simplicity of its construction, the ability of hovering and the vertical take-off and landing (VTOL) capability, etc. Because of those specific capabilities, this vehicle can be applied to many fields: search and rescue, mobile sensor networks, fire observation, etc. However a quad-rotor is much affected by the disturbance due to the characteristics of structure. So this vehicle needs attitude control for stabilizing. In this paper, we design the control law for automatic stabilization. The PID controller is used to control a brushless DC motor. And an accelerometer is used to measure the roll and pitch angles of a quad-rotor.

  • PDF

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Quad-rotor's stabilization control with Fuzzy + I method

  • Shin, Heon-Soo;Choe, Jeong-Yeon;Jeong, Gyeong-Gwon;Kim, Ju-Ung;O, Jeong-Hun;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1127-1128
    • /
    • 2008
  • In this paper, we propose a control method to improve control performance for a Quad-rotor Unmanned Aerial Vehicle's stabilization. The proposed method is the Fuzzy+I control that contains a fuzzy controller which processes signals from the error and the change of error, and generates the control signal by summing up fuzzy output signal and integral signal. We simulated and experimented on the fuzzy+I control method by implementing Quad-rotor UAV that is able to hovering, for the purpose of verifying the effectiveness of the proposed fuzzy+I control method in comparison with general PID control, and we found out that fuzzy+I controller improved control performance of the system.

  • PDF

Design of Vectored Sum Defuzzification Based Fuzzy Logic System for Hovering Control of Quad-Copter

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.318-322
    • /
    • 2016
  • A quad-copter or quad rotor system is an unmanned flying machine having four engines, which their thrust force is produced by four propellers. Its stable control is very important and has widely been studied. It is a typical example of a nonlinear system. So, it is difficult to get a desired control performance by conventional control algorithms. In this paper, we propose the design of a vectored sum defuzzification based fuzzy logic system for the hovering control of a quad-copter. We first summarize its dynamics and introduce a vectored sum defuzzification scheme. And then we design a vectored sum defuzzification based fuzzy logic system. for the hovering control of the quad-copter. Finally, in order to check the feasibility of the proposed system we present some simulation examples.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.