• Title/Summary/Keyword: Unmanned Aircraft

Search Result 405, Processing Time 0.029 seconds

A Study on Design Method and Control of Blimp-4 Rotor Craft (Blimp형 4 Rotor Craft의 설계방법에 관한 연구)

  • 박윤수;이호길;김진영;원대희;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.996-1000
    • /
    • 2003
  • In this paper, Fly robot with electric power, a kind of Unmanned aerial vehicle (UAV), is considered as an autonomous hovering platform, capable of vertical lift-off, landing and stationary hovering. This aircraft has four rotor and DC motors of electrical Power, which is capable of omni-direction for indoor application. In the earlier days of vertical flight experimentation developers looked at the intuitively easy control functionality of 4 rotor designs. But we need to obtain design method of suitable structures and adequate components because the existing prototypes of 4 rotor-craft don't analyze the propeller, motor characteristic and propose a methodology to optimize this system. In this paper, we will show the new 4 rotor craft with blimp, analyze design and manufacturing method of 4 rotor craft system. Also we prove propriety of our design and manufacturing method by being based on thrust and motor experiment.

  • PDF

The feasible constant speed helical trajectories for propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.371-399
    • /
    • 2017
  • The motion of propeller driven airplanes, flying at constant speed on ascending or descending helical trajectories is analyzed. The dynamical abilities of the airplane are shown to result in restrictions on the ranges of the geometrical parameters of the helical path. The physical quantities taken into account are the variation of air density with altitude, the airplane mass change due to fuel consumption, its load factor, its lift coefficient, and the thrust its engine can produce. Formulas are provided for determining all the airplane dynamical parameters on the trajectory. A procedure is proposed for the construction of tables from which the flyability of trajectories at a given angle of inclination and radius can be read, with the corresponding minimum and maximum speeds allowed, the final altitude reached and the amount of fuel burned. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the C-130 Hercules.

Derivation and Validation of Aerodynamic Parameters of Small Airplanes Using Design Software and Subjective Tests (설계용 S/W를 활용한 소형비행기의 비행특성 매개변수 추출과 주관적 시험평가방식에 관한 연구)

  • 이숙경;공지영;최유환;윤석준
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.142-147
    • /
    • 2004
  • It is very difficult to acquire high-fidelity flight test data for small airplanes such as typical unmanned aerial vehicles because MEMS-type small sensors used in the tests do not present reliable data in general. Besides, it is not practical to conduct expensive flight tests for low-cost small airplanes in order to simulate their flight characteristics. A practical approach to obtain acceptable flight data, including stability and control derivatives and data of weight and balance, is proposed in this study. Aircraft design software such as Darcorp's AAA is used to generate aerodynamic data for small airplanes, and moments of inertia are calculated using CATIA, structural design software. These flight data from simulation software are evaluated subjectively and tailored using simulation flight by experienced pilots, based on the certified procedures in FAA AC 120-45A and 40B, which are used for manned airplane simulators.

  • PDF

Development of a UAV Flight Control System Using a Low Cost GPS/IMU (저가형 GPS/IMU를 이용한 UAV 비행 제어 시스템 개발)

  • Koo, Won-Mo;Chun, Se-Bum;Won, Dae-Hee;Kang, Tae-Sam;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.502-510
    • /
    • 2008
  • UAVs(Unmanned Aerial Vehicles) have many applications in military and commercial areas. The flight control system of UAVs is more important than manned aircraft's because the mission of UAVs must be operated without a human pilot. But very heavy and expensive navigation system makes it difficult to develop UAV flight control system. In this research, GPS/IMU integrated navigation filter was developed for light weight/low cost flight control system of small UAVs. With this navigation filter, full flight control system which has real time operating capability has been developed. The performance of the flight control system is basically checked by HILSIM (Hardware In the Loop SIMulation). Finally, the flight control system is verified by showing performance test result under real flight environment.

The use of conservation drones in ecology and wildlife research

  • Ivosevic, Bojana;Han, Yong-Gu;Cho, Youngho;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.113-118
    • /
    • 2015
  • Conservation drones are remote-controlled devices capable of collecting information from difficult-to-access places while minimizing disturbance. Although drones are increasingly used in many research disciplines, their application to wildlife research remains to be explored in depth. This paper reports on the use of Phantom 2 Vision+ for monitoring areas in two national parks in South Korea. The first research area was conducted in Chiaksan National Park, and the second in Taeanhaean National Park. The aim of this research is to introduce ecologists and researchers alike to conservation drones and to show how these new tools have are fundamentally helping in the development of natural sciences. We also obtained photographs and videos of monitoring areas within our test site.

On determining the flyability of airplane rectilinear trajectories at constant velocity

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.551-579
    • /
    • 2018
  • This work is concerned with the motion of propeller driven airplanes, flying at constant velocity on ascending or descending rectilinear trajectories. Its purpose is to provide important features of rectilinear flights that are required for airplane trajectory planning but that cannot be found already published. It presents a method for calculating the amount of fuel used, the restrictions on the trajectory parameters, as inclination and speed, which result from the load factor, the lift coefficient, the positivity and upper boundedness of the power available. It presents a complete discussion of both ascending and descending flights, including gliding. Some original remarks are made about the parameters of gliding. It shows how to construct tables of parameters allowing to identify rapidly flyable trajectories. Sample calculations are shown for the Cessna 182 and a Silver Fox like unmanned aerial vehicle.

Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation (IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Kim, J.Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

Design of Gimbal Hub for Smart UAV Tilt Rotor (스마트무인기 틸트로터용 짐발허브 설계)

  • Lee, Joo-Young;Kim, Jai-Moo;Lee, Myeong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.625-634
    • /
    • 2007
  • KARI SUAV program was initiated to develop a Smart Unmanned Aerial Vehicle with innovative smart technologies. SUAV is a tilt rotor aircraft of which rotor system is 3-bladed, gimbaled hub type. Several existing concepts of gimbaled hub were analyzed and compared to investigate the applicability to SUAV rotor system design. From the result of these investigations, it was concluded that a new design concept of low cost and high reliability characteristics was necessary for the rotor hub development of SUAV. The design requirements of new gimbal hub concept and the design results were presented. Also, the analysis results to verify the satisfaction of design requirements of SUAV rotor system were presented.

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

Technical and Standardization Trends on Control and Non-Payload Communications for Unmanned Aircraft Systems (무인기 제어용 무선통신 기술 및 표준화 동향)

  • Kim, H.W.;Kang, K.S.;Chang, D.I.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.3
    • /
    • pp.74-83
    • /
    • 2015
  • 무인기의 기술 발전에 따른 운송, 통신중계, 교통감시, 산불감시 진화, 재해 재난대처 등 무인기의 민간 및 공공 수요 확대로, 무인기는 국가 공역으로의 운항이 요구되고 있으며 국가 공역으로의 안전한 진입을 위해서는 유인항공기 조종사에 의한 시각 감지 및 회피와 동일한 수준의 안전성을 제공하는 탐지회피 능력과 함께 신뢰성 높은 무인기 제어용 통신링크 확보가 필수적으로 요구되고 있다. 따라서, 본고에서는 무인기 제어용 통신링크에서 요구되는 기술적 특징 및 국내외 기술/표준화 동향을 파악하고 고신뢰성 무인기 제어용 통신링크 확보를 위한 기술적 및 표준화 이슈를 살펴보고자 한다.

  • PDF