• Title/Summary/Keyword: Unloading ratio

Search Result 108, Processing Time 0.023 seconds

Nonlinear Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.179-186
    • /
    • 2003
  • This paper describes an extension of a numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subject to monotonic in-plane shear. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. In addition, curved unloading and reloading branches inferred from the stress-strain relation of steel considering the Bauschinger effect are used. Modifications of the stress-strain relation of concrete and steel are also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively.

  • PDF

Estimation of Running Safety of Electric Multiple Unit for Commute use in Incheon International Airport Railway (인천국제공항철도 통근형 차량의 주행안전성 평가)

  • Seo, Jung-Won;Hur, Hyun-Moo;Kwon, Seok-Jin;Lee, Dong-Hyung;Kwon, Sung-Tae;Hong, Yong-Ki;Park, Ok-Jeoung;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.56-61
    • /
    • 2006
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 110km/h for estimating the running safety of Incheon Int'l Airport EMU. As the test results, could confirm the curving performance and running safety of Incheon Int'l Airport EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF

Technologies for improving the running safety of a tram operating on the concrete embedded track (콘크리트 매립형 궤도를 운행하는 트램의 주행안전성 향상 기술)

  • Seo, Sung-il;Mun, Hyung-Suk;Kim, Sun-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.717-724
    • /
    • 2017
  • To improve the running safety of a tram operating on a concrete embedded track, a bogie, the core system of the tram, was developed and fabricated. After it was integrated with the prototype car body, a short distance track with a sharp curve and steep gradient was constructed for the test operation. A formula to check the interference of the wheel flange with the track during running was proposed. Based on the results provided by the formula, the track was designed. Another simple formula was derived to estimate the derailment quotient and the wheel unloading ratio. During running on the track, the acceleration of the car body was measured and the interface status between the wheel and the track was monitored by a video system. According to the results calculated by these simple formulas, the derailment quotient and wheel unloading ratio were estimated to be within the safety criteria. In the actual test, no derailment occurred and the measured acceleration satisfied the criteria. Also, there was no interference between the wheel and track. The video monitoring results showed no signs of derailment, such as the climbing of the wheel. The pinion in the center showed good running safety, contacting smoothly with the rack. The measurements of environmental noise proved that the criteria were satisfied.

A Study on Physically small Surface Fatigue Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 AI 합금에 있어서 물리적 미소 표면 피로균열 성장거동에 관한 연구)

  • Sin, Yong-Seung;Seo, Seong-Won;Yu, Heon-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.106-117
    • /
    • 1992
  • In this study, the propagation behaviour and the closure phenomena of physically small surface cracks were investigated by the techinque of the Kikukawa-unloading elastic compliance method using a back face strain gage. The surface cracks initiated and propagated from notched specimens under constant amplitude bending load. The crack shape (aspect ratio) with approximately semi-circular at the early stage was changed to semi-elliptical as the cracks grew larger. The crack depth (a) could be expressed uniquenly by the crack length (c). The dependence of the crack propagation rate on the stress ratio R was strongly related in the lower ${\Delta}K$ range. The deceleration of the surface crack propagation rate was prominent in lower R during the crack length was small. When the propagation rate was rearranged with the effective stress intensity factor range ${\Delta}$K_{eff} the dependence of the crack propagation rate on the stress ratio R was found to be diminshed. These were caused by the crack closure phenomena that was most prominent at the lower propagation rate. The mechanism of crack closure phenomena was dominated by the plasticity-induced mechanism.

  • PDF

Overall damage identification of flag-shaped hysteresis systems under seismic excitation

  • Zhou, Cong;Chase, J. Geoffrey;Rodgers, Geoffrey W.;Xu, Chao;Tomlinson, Hamish
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.163-181
    • /
    • 2015
  • This research investigates the structural health monitoring of nonlinear structures after a major seismic event. It considers the identification of flag-shaped or pinched hysteresis behavior in response to structures as a more general case of a normal hysteresis curve without pinching. The method is based on the overall least squares methods and the log likelihood ratio test. In particular, the structural response is divided into different loading and unloading sub-half cycles. The overall least squares analysis is first implemented to obtain the minimum residual mean square estimates of structural parameters for each sub-half cycle with the number of segments assumed. The log likelihood ratio test is used to assess the likelihood of these nonlinear segments being true representations in the presence of noise and model error. The resulting regression coefficients for identified segmented regression models are finally used to obtain stiffness, yielding deformation and energy dissipation parameters. The performance of the method is illustrated using a single degree of freedom system and a suite of 20 earthquake records. RMS noise of 5%, 10%, 15% and 20% is added to the response data to assess the robustness of the identification routine. The proposed method is computationally efficient and accurate in identifying the damage parameters within 10% average of the known values even with 20% added noise. The method requires no user input and could thus be automated and performed in real-time for each sub-half cycle, with results available effectively immediately after an event as well as during an event, if required.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

A New Proposed Technique for a Secondary Consolidation Coefficient Based on the Constant Rate of Strain Test (CRS시험에 의한 2차압밀계수의 결정방법 제안)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • The present study is suggested to estimate the degree of secondary consolidation caused by various changes of stress such as loading, unloading and reloading in improving poor subsoil through pre-compression loading construction method and, for this purpose, examined the characteristics of the consolidation of Kunsan clay through incremental loading test (IL) using standard consolidation tester and constant loading rate test (CLR), which were adapted from the constant rate of strain test (CRS). In addition, after CRS test, this study determined the characteristics of secondary consolidation and relationships among void ratio, effective stress and time according to the ratio of effective over-consolidation on reloading at the point of time of random expansion. Kunsan clay had larger expansion and smaller secondary consolidation settlement when the ratio of effective over-consolidation was high. In addition, when loading was applied after the load was removed at once, the secondary consolidation coefficient $C'_{\alpha}$ was smaller than that when the load was removed gradually, and when the ratio of effective over-consolidation was over 1.4 a similar value was produced. Based on the entire settlement resulting from reloading, the secondary consolidation coefficient $C"_{\alpha}$ increased non-linearly with the lapse of time but the final value was similar to that in the case of rapid removal. The strain velocity of void ratio was in a regular linear relationship with the increase of loading time regardless of the ratio of effective over-consolidation in both tests and it grew smaller with the increase of the ratio of effective over-consolidation.tion.

DETECTION OF MICROSCOPIC BEHAVIOR OF LOW VELOCITY IMPACT DAMAGED CFRP LAMINATE UNDER TENSILE LOADING BY ELASTIC WAVES (탄성파 응용기술에 의한 CFRP 복합재료의 저속충격 손상역의 미시적 거동 특성 탐지)

  • 이준현;권오양;이승석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.650-655
    • /
    • 1993
  • Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.

  • PDF

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H.;Schnack, E.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.621-639
    • /
    • 2006
  • Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.

Influence of Concrete Strength on Tension Stiffening (콘크리트강도가 인장증강에 미치는 영향에 관한 연구)

  • Yum, Hwan-Seok;Yun, Sung-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • This paper describes the results obtained from 11 direct tension tests to explore the influence of concrete strength on tension stiffening behavior in reinforced concrete axial members. Three different concrete compressive strengths, 250, 650, and 900kgf/$\textrm{cm}^2$, were included as a main variable, while the ratio of cover thickness-to-rebar diameter was kept constant to be 2.62 to prevent from splitting cracking. As the results, it was appeared that, as higher concrete strength was used, less tension stiffening effect was resulted, and the residual deformation upon unloading was larger. In addition, the spacing between adjacent transverse cracks became smaller with higher concrete strength. The major cause for those results may be attributed to the fact that nonuniform bond stress concentration at both loaded ends and crack sections becomes severer as higher concrete is used, thereby local bond failure becomes more susceptible. From these findings, it would be said the increase in flexural stiffness resulting from using high-strength concrete will be much smaller than that predicted by the conventional knowledge. Finally, a factor accunting for concrete strength was introduced to take account for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening behavior of these tests.