DOI QR코드

DOI QR Code

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H. (Department of Civil Engineering, Suleyman Demirel University) ;
  • Schnack, E. (Institute of Solid Mechanics, Karlsruhe University) ;
  • Demir, F. (Department of Civil Engineering, Suleyman Demirel University)
  • Received : 2006.01.23
  • Accepted : 2006.06.28
  • Published : 2006.11.30

Abstract

Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.

Keywords

References

  1. Agamirov, VL. (1990), Dynamic Problems of Nonlinear Shell Theory (in Russian), Moscow: Nauka
  2. Bajenov, va and Lomunov, VK. (1983), 'Theoretic-experimental investigation of elasto-plastic buckling of cylindrical shells under axial impact', Int. Appl. Mech., 19(6),63-69
  3. Batterman, S.C. (1965), 'Plastic buckling of axially compressed cylindrical shells', AIAA J, 3(2),316-325 https://doi.org/10.2514/3.2848
  4. Bojinski, A.N. and Wolmir, A.C. (1962), 'An experimental investigation of stability of the cylindrical shells in yield region', (in Russian). DAN USSR 142(2)
  5. Coppa, A.P. and Nash, W.A. (1962), Dynamic Buckling ofShell Structures Subject to Longitudinal Impact. ASD TDR 62-744
  6. Durban, D. (1998), 'Plastic buckling of plates and shells. Stability analysis of plates and shells', NACAICP1998- 206280,293
  7. Durban, D. and Zuckerman, Z. (1999), 'Elasto-plastic buckling of rectangular plates compression/tension', Int. J Mech. Sci., 41, 751-765 https://doi.org/10.1016/S0020-7403(98)00055-1
  8. Florence, A.L. and Goodier, J.N. (1968), 'Dynamic plastic buckling of cylindrical shells in sustained axial compressive flow', J Appl. Mech., 35, 80-86 https://doi.org/10.1115/1.3601178
  9. Gerard, G. (1956), Compressive and Torsional Buckling of Thin Walled Cylinders in Yield Region, NASA TN 3726
  10. Gerard, G (1957), 'Plastic stability theory of thin shells', J Aeronautic Sci., 24(4), 264-279
  11. Giezen, J.J., Babcock, C.D. and Singer, J. (1991), 'Plastic buckling of cylindrical shells under biaxial loading', Experimental Mech., 31, 337-343 https://doi.org/10.1007/BF02325990
  12. Hill, R. (1983), The Mathematical Theory of Plasticity, London: Oxford University Press (Chapter 2)
  13. Il'ishin, A.A. (1947), The Elasto-Plastic Stability of Plates. National Advisory Committee for Aeronautics, Technical Memorandum, No. 1188, Washington. (Translation: Uprugo-plasticeskaya ustuycivost plasteen. Prikladnaya Matematika i Mekanika X, 623-638, 1946)
  14. Il'ishin, AA (1948), Plasticity (in Russian), Moscow-Leningrad: Goztexizdat
  15. Jones, N. and dos Reis, N.L.M. (1980), 'On the dynamic buckling of a simple elastic-plastic model', Int. J Solids Struct., 16(11), 969-989 https://doi.org/10.1016/0020-7683(80)90099-2
  16. Karagizova, D. and Jones, N. (1992), 'Dynamic pulse buckling of a simple elastic-plastic model including axial inertia', Int. J Solids Struct., 29 (10), 1255-1272 https://doi.org/10.1016/0020-7683(92)90236-M
  17. Karagizova, D. and Jones, N. (1995), 'Some observations on the dynamic elastic-plastic buckling of a structural model', Int. J Impact Eng., 16(4), 621-635 https://doi.org/10.1016/0734-743X(94)00058-5
  18. Karagizova, D. and Jones, N. (2000), 'Dynamics elasto-plastic buckling of circular cylindrical shells under axial impact', Int. J Solids Struct., 37, 2005-2034 https://doi.org/10.1016/S0020-7683(98)00343-6
  19. Karagizova, D. and Jones, N. (2002), 'On dynamic buckling phenomena in axially loaded elasto-plastic cylindrical shells', Int. J Non-linear Mech., 37(7), 1223-1238 https://doi.org/10.1016/S0020-7462(01)00146-9
  20. Korolyov, V.l. (1971), Elasto-Plastic Deformation of Shells (in Russian), Moscow: Mashinostroenie
  21. Kosel, F. and Bremec, B. (2004), 'Elastoplastic buckling of circular annular plates under uniform in-plane loading', Thin-Walled Struct., 42, 101-117 https://doi.org/10.1016/S0263-8231(03)00126-5
  22. Lee, L.H.N. (1981), 'Dynamic buckling inelastic column', Int. J Solids Struct., 17,413-418
  23. Lee, L.N.H. (1962), 'Inelastic buckling of initially imperfect cylindrical shells subjected to axial comparison', J Aerospace Sci., 29 (1), 87-95 https://doi.org/10.2514/8.9306
  24. Lepik, U. (1998), 'On plastic buckling of cylindrical shells struck axially with a mass', Int. J Non-linear Mech., 33, 235-246 https://doi.org/10.1016/S0020-7462(97)00005-X
  25. Li, M., Wang, R. and Han, M. (1994), 'An experimental investigation of the dynamic axial buckling of cylindrical shell using a Kolsky bar', Acta Mech. Sinica, 10,260-266 https://doi.org/10.1007/BF02487614
  26. Li, S. and Reid, S.R. (1992), 'The plastic buckling of axially compressed square tubes', J Appl. Mech., 59, 276-285 https://doi.org/10.1115/1.2899517
  27. Lin, M.C. and Yeh, M.K. (1994), 'Buckling of elasto-plastic circular cylindrical shells under axial compression', AIAA J, 32,2309-2315 https://doi.org/10.2514/3.12291
  28. Lindberg, H.E. (1987), 'Dynamic buckling of cylindrical shell from oscillating waves following axial impact', Int. J Solids Struct., 23(6),699-702
  29. Mao, R. and Lu, G (2001), 'Plastic buckling of circular cylindrical shells under combined in-plane loads', Int. J Solids Struct., 38,741-757 https://doi.org/10.1016/S0020-7683(00)00041-X
  30. Ore, E. and Durban, D. (1992), 'Elasto-plastic buckling of axially compressed circular cylindrical shells', Int. J Mech. Sci., 34(9), 727-742 https://doi.org/10.1016/0020-7403(92)90005-2
  31. Sachenkov, AV and Baktieva, L.U. (1978), 'Research on the theory of plates and shells, Approach to the Solution of Dynamic Stability Problems of Thin Shells', Kazan State University, Kazan, 13, 137-152. (in Russian)
  32. Shevchenko, YN. and Piskin, V.V (2003), 'Axisymmetric thermoelastoplastic stress state of isotropic solids of revolution under impulsive loading', Int. Appl. Mech., 39(5), 1255-1280
  33. Sobel, L.H. and Newman, S.Z. (1980), 'Plastic buckling cylindrical shells under axial compression', J Pressure Vessel Technol., 102,41-49
  34. Sofiyev, A.H. (2002), 'The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure', Struct. Eng. Mech., 14(6),661-677 https://doi.org/10.12989/sem.2002.14.6.661
  35. Sofiyev, AH. (2003), 'Torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to dynamic loading', European J Mech. A/Solids, 22, 943-951 https://doi.org/10.1016/S0997-7538(03)00090-1
  36. Sofiyev, AH. (2005), 'The stability of compositionally graded ceramic-metal cylindrical shells under a-periodic axial impulsive loading', J Compos. Struct., 69, 257-267
  37. Storakers, B. (1975), 'On buckling ofaxisymmetrics thin elasto-plastic shells', Int. J Solids Struct., 11, 1329- 1338 https://doi.org/10.1016/0020-7683(75)90061-X
  38. Tugcu, P. (1991), 'On plastic buckling predictions', Int. J Mech. Sci., 33(7), 529-539 https://doi.org/10.1016/0020-7403(91)90015-U
  39. Tvergraad, V (1983), 'Plastic buckling of axially compressed circular shells', Thin Walled Struct., 1, 139-163 https://doi.org/10.1016/0263-8231(83)90018-6
  40. Wang, AW. and Tian, W.Y. (2003), 'Twin-characteristic-parameter solution of axisymmetric dynamic plastic buckling for cylindrical shells under axial compression waves', Int. J Solids Struct., 40(12), 3157-3175 https://doi.org/10.1016/S0020-7683(03)00051-9
  41. Wang, C.M. (2004), 'Plastic buckling of simply supported, polygonal Mindlin plates', J Eng. Mech., ASCE, 130(1),117-122 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(117)
  42. Wang, E.M., Xiang, Y. and Chakrabarty, J. (2001), 'Elastic/plastic buckling of thick plates', Int. J Solids Struct., 8, 8617-8640
  43. Wolmir, A.S. (1967), Stability ofElastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508
  44. Wolmir, E.A. (1975), 'The behavior of cylindrical panels under dynamic axial compression in elasto-plastic zone', (in Russian). In: Proc. 10th Int. Conf. Theory ofPlates and Shells, Kutaisi-Moscow, 352-355
  45. Yeh, M.K., Lin, M.C. and Wu, W.T. (1999), 'Bending buckling of an elasto-plastic cylindrical shell with a cutout', Eng. Struct., 21(11),996-1005 https://doi.org/10.1016/S0141-0296(98)00058-3
  46. Yu, TX, Yang, J.L., Reid, S.R. and Austin, C.D. (1996), 'Dynamic behaviour of elasto-plastic free-free beams subjected to impulsive loading', Int. J Solids Struct., 33(18), 2659-2680 https://doi.org/10.1016/0020-7683(95)00169-7
  47. Zimcik, D.G and Tennyson, R.C. (1980), 'Stability of circular cylindrical shells under transient axial impulsive loading', AIAA J, 18,691-699 https://doi.org/10.2514/3.50806

Cited by

  1. Stability of pressure-loaded functionally graded cylindrical shells with inelastic material properties vol.92, 2015, https://doi.org/10.1016/j.tws.2015.02.016