• Title/Summary/Keyword: Unknown word extraction

Search Result 6, Processing Time 0.021 seconds

KNE: An Automatic Dictionary Expansion Method Using Use-cases for Morphological Analysis

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • Morphological analysis is used for searching sentences and understanding context. As most morpheme analysis methods are based on predefined dictionaries, the problem of a target word not being registered in the given morpheme dictionary, the so-called unregistered word problem, can be a major cause of reduced performance. The current practical solution of such unregistered word problem is to add them by hand-write into the given dictionary. This method is a limitation that restricts the scalability and expandability of dictionaries. In order to overcome this limitation, we propose a novel method to automatically expand a dictionary by means of use-case analysis, which checks the validity of the unregistered word by exploring the use-cases through web crawling. The results show that the proposed method is a feasible one in terms of the accuracy of the validation process, the expandability of the dictionary and, after registration, the fast extraction time of morphemes.

Korean Noun Extractor using Occurrence Patterns of Nouns and Post-noun Morpheme Sequences (한국어 명사 출현 특성과 후절어를 이용한 명사추출기)

  • Park, Yong-Hyun;Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.919-927
    • /
    • 2010
  • Since the performance of mobile devices is recently improved, the requirement of information retrieval is increased in the mobile devices as well as PCs. If a mobile device with small memory uses a tradition language analysis tool to extract nouns from korean texts, it will impose a burden of analysing language. As a result, the need for the language analysis tools adequate to the mobile devices is increasing. Therefore, this paper proposes a new method for noun extraction using post-noun morpheme sequences and noun patterns from a large corpus. The proposed noun extractor has only the dictionary capacity of 146KB and its performance shows 0.86 $F_1$-measure; the capacity of noun dictionary corresponds to only the 4% capacity of the existing noun extractor with a POS tagger. In addition, it easily extract nouns for unknown word because its dependence for noun dictionaries is low.

Feature Generation of Dictionary for Named-Entity Recognition based on Machine Learning (기계학습 기반 개체명 인식을 위한 사전 자질 생성)

  • Kim, Jae-Hoon;Kim, Hyung-Chul;Choi, Yun-Soo
    • Journal of Information Management
    • /
    • v.41 no.2
    • /
    • pp.31-46
    • /
    • 2010
  • Now named-entity recognition(NER) as a part of information extraction has been used in the fields of information retrieval as well as question-answering systems. Unlike words, named-entities(NEs) are generated and changed steadily in documents on the Web, newspapers, and so on. The NE generation causes an unknown word problem and makes many application systems with NER difficult. In order to alleviate this problem, this paper proposes a new feature generation method for machine learning-based NER. In general features in machine learning-based NER are related with words, but entities in named-entity dictionaries are related to phrases. So the entities are not able to be directly used as features of the NER systems. This paper proposes an encoding scheme as a feature generation method which converts phrase entities into features of word units. Futhermore, due to this scheme, entities with semantic information in WordNet can be converted into features of the NER systems. Through our experiments we have shown that the performance is increased by about 6% of F1 score and the errors is reduced by about 38%.

A Method for Unknown-Word Extraction from Korean Text (한국어 구문 분석기를 이용한 지명 추정 시스템 설계 및 구현)

  • Lee, Hyun-Suk;Ha, You-Sun;Kim, Tae-Hyun;Lee, Mann-Ho;Myaeng, Sung-Hyon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.383-386
    • /
    • 2000
  • 본 논문에서는 학습데이터를 이용하여 텍스트로부터 미등록 고유명사를 추정하는 방법을 제안한다. 고유명사 추정을 위해 먼저 형태소 분석기를 이용하여 품사가 명사인 단어들을 후보단어로 선택한다. 이렇게 선택된 후보단어가 고유명사인지 추정해 보기 위해 학습데이터를 이용하여 구성한 정보집합을 사용한다. 이러한 정보집합으로는 이름집합, 접미사집합, 단서집합, 배제어 집합이 있다. 본 논문에서는 이런 정보를 이용하여 한국어 지명을 추정하는 시스템을 구현하여 실험한 결과 77.2%의 정확도와 84.9%의 재현율을 보였다.

  • PDF

An Efficient Method for Korean Noun Extraction Using Noun Patterns (명사 출현 특성을 이용한 효율적인 한국어 명사 추출 방법)

  • 이도길;이상주;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.173-183
    • /
    • 2003
  • Morphological analysis is the most widely used method for extracting nouns from Korean texts. For every Eojeol, in order to extract nouns from it, a morphological analyzer performs frequent dictionary lookup and applies many morphonological rules, therefore it requires many operations. Moreover, a morphological analyzer generates all the possible morphological interpretations (sequences of morphemes) of a given Eojeol, which may by unnecessary from the noun extraction`s point of view. To reduce unnecessary computation of morphological analysis from the noun extraction`s point of view, this paper proposes a method for Korean noun extraction considering noun occurrence characteristics. Noun patterns denote conditions on which nouns are included in an Eojeol or not, which are positive cues or negative cues, respectively. When using the exclusive information as the negative cues, it is possible to reduce the search space of morphological analysis by ignoring Eojeols not including nouns. Post-noun syllable sequences(PNSS) as the positive cues can simply extract nouns by checking the part of the Eojeol preceding the PNSS and can guess unknown nouns. In addition, morphonological information is used instead of many morphonological rules in order to recover the lexical form from its altered surface form. Experimental results show that the proposed method can speed up without losing accuracy compared with other systems based on morphological analysis.

Quantization Based Speaker Normalization for DHMM Speech Recognition System (DHMM 음성 인식 시스템을 위한 양자화 기반의 화자 정규화)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 2003
  • There have been many studies on speaker normalization which aims to minimize the effects of speaker's vocal tract length on the recognition performance of the speaker independent speech recognition system. In this paper, we propose a simple vector quantizer based linear warping speaker normalization method based on the observation that the vector quantizer can be successfully used for speaker verification. For this purpose, we firstly generate an optimal codebook which will be used as the basis of the speaker normalization, and then the warping factor of the unknown speaker will be extracted by comparing the feature vectors and the codebook. Finally, the extracted warping factor is used to linearly warp the Mel scale filter bank adopted in the course of MFCC calculation. To test the performance of the proposed method, a series of recognition experiments are conducted on discrete HMM with thirteen mono-syllabic Korean number utterances. The results showed that about 29% of word error rate can be reduced, and that the proposed warping factor extraction method is useful due to its simplicity compared to other line search warping methods.