• Title/Summary/Keyword: University unfilled

Search Result 93, Processing Time 0.022 seconds

Differences in Rice Quality and Physiochemical Component between Protox Inhibitor-Herbicide Resistant Transgenic Rice and Its Non-transgenic Counterpart (Protox 저해형 제초제 저항성 형질환벼와 비형질전환벼의 미질 및 이화학적 성분 차이)

  • Jung, Ha-Il;Yun, Young-Beom;Kwon, Oh-Do;Lee, Do-Jin;Back, Kyoung-Whan;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Characteristics related to grain quality and physiochemical components such as mineral, total amino acid, free amino acid, and free sugar composition were investigated in Protox inhibitor resistanttransgenic rice (MX, PX, and AP37) and its nontransgenic counterpart (WT). Head rice, palatability, protein, and whiteness (except for MX and AP37) of milled transgenic rice were high or similar to those of the non-transgenic counterpart. Immature rice, unfilled grain, and cracked kernels (PX and AP37) of milled transgenic rice were lower than those of its non-transgenic counterpart. However, there were no significant differences in damaged grain between the transgenic rice lines and its counterpart. Potassium content in PX and copper contents in PX and AP37 were only low compared with their non-transgenic counterparts, but other mineral contents in transgenic rice lines were high or showed no significant differences compared with non-transgenic counterparts. Contents of most total amino acid composition in transgenic rice lines were high or similar to those in non-transgenic counterparts, but the content of isoleucine in AP37 was only low compared with its non-transgenic counterpart. On the other hand, free amino acid, leucine and tyrosine in PX and AP37, and total free amino acid in PX were low compared with their non-transgenic counterparts. However, the content of free amino acid in other kinds in transgenic rice lines were similar to those in their non-transgenic counterparts. Contents of sucrose in MX and PX were low compared with non-transgenic counterpars, but contents of fructose, glucose, and maltose in transgenic rice lines were high or similar compared with their non-transgenic counterparts. This results indicated that Protox genes had no negative affect on the nutritional composition of rice.

ELASTIC CONSTANTS, SHEAR BOND STRENGTH OF TUNNEL RESTORATIVE MATERIALS AND MARGINAL RIDGE STRENGTH OF RESTORED TEETH (터널형 2급와동 충전재의 탄성계수와 전단결합강도 및 수복치의 변연융선 파절강도에 관한 연구)

  • Lee, Ka-Yean;Park, Yeong-Joon;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.746-763
    • /
    • 1996
  • An alternative design to conventional class II cavity preparation for proximal carious lesions is the tunnel preparation. It preserves the marginal ridge intact, thus making it possible to maintain the natural contact relationship with the adjacent tooth and minimize tooth reduction. This in vitro study was purposed to evaluate the effect of the materials' elastic constants and shear-bond strength on the marginal ridge fracture resistance of teeth restored by the tunnel technique, and to find the materials of choice for tunnel restorations. $Resinomer^{(R)}$, $Ketac-silver^{(R)}$, $Miracle-Mix^{(R)}$, and Tytin were used as restorative material. The elastic constants of each restorative material were evaluated by ultrasonic pulse measurement. Young's modulus and bulk modulus of the restorative materials were evaluated in three specimens for each material type. The shear-bond strength of the restorative materials to the dentin surface was measured after thermocycling 400 times between 6 and $60^{\circ}C$, using ten specimens for each material type. For measuring marginal ridge strength, 60 sound extracted molar teeth were distributed into six groups by size. Sound molar teeth were used as a Control group and unfilled prepared teeth were grouped as Unrestored. Another four groups were named Resinomer group, Ketac-Silver group, Miracle Mix group, and Tytin group by type of restorative material. Tunnel cavity preparation was done with ' 1/2, 2, and 4 round burs in sequence. Initial access to proximal surface was made through an occlusal access preparation started at least 2mm from the marginal ridge, and the proximal opening was formed about 2.5mm below the marginal ridge. After restoration and thermocycling, marginal ridge strength was measured using a universal testing machine. The results were as follows: 1. The Young's modulus of $Tytin^{(R)}$ was 63.95 GPa, followed by $Ketac-Silver^{(R)}$ 27.60 GPa, $Miracle-mix^{(R)}$ 18.48 GPa, and $Resinomer^{(R)}$ 10.74 GPa showing significant differences between the groups(P<0.05). The bulk modulus of the materials showed the same order as Young's modulus. The value of $Tytin^{(R)}$ showed 59.57 GPa indicating that it will deform less than other materials under the same stress. It was followed by $Ketac-Silver^{(R)}$ 23.57 GPa, Miracle $Mix^{(R)}$ 12.50 GPa, and $Resinomer^{(R)}$ 11.60 GPa. 2. The Resinomer group had a shear-bond strength of 7.41 MPa which was significantly higher than those of the Ketac-Silver group (1.80 MPa) and the Miracle Mix group (2.84 MPa) (P<0.01). All the specimens of Tytin group detatched from the dentin surface during thermocycling. 3. The mean marginal ridge strength of the Unrestored group(46.14 kgf) was significantly lower than that of the Control group (84.24 kgf) (P<0.01). The marginal ridge strength of teeth restored by the tunnel technique was, in order, Ketac-Silver group 74.06 kgf, Miracle Mix group 73.36 kgf, Resinomer group 63.47 kgf, and Tytin group 58.76 kgf. The Ketac-Silver, Miracle Mix, and Resinomer groups showed no significant difference with the Control group (P>0.05), but the Tytin group showed significantly lower strength compared to the Control group(P<0.05). The results showed that the marginal ridge strength of the teeth restored by the tunnel technique was not significantly lower than that of sound teeth. They also demonstrated that the bonding strength of the restorative material to the tooth surface should be high and the modulus of elasticity should not be lower than that of the tooth in order to restore the marginal ridge strength to its natural condition.

  • PDF

A STUDY ON MICROLEAKAGE OF PREVENTIVE RESIN RESTORATION (예방적 레진수복의 미세누출에 관한 연구)

  • Koo, Hyun-Jung;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.504-511
    • /
    • 2001
  • Preventive resin restoration, extended concept of occlusal pit and fissure sealing, is procedure composed of as follows. Cavity preparation is limited to areas of initial caries The cavity is then restored with composite resin, while other sound pits and fissures are sealed with pit and fissure sealant. If pit and assure sealant with which microrestoration is possible is used, it may be of great benefit to both patient and operator in case of difficult-to-control children s treatment. However study on preventive resin restoration using this kind of materials have been scarce. The purpose of this study was to compare the microleakage of four different modes of preventive resin restoration. Restoration using only composite resin was compared together Fifty-five bicuspids were prepared with small class I cavity preparation on the occlusal surface, divided into the following groups and restored accordingly. Group 1 : Cavity was restored with Z-100 composite resin Group 2 : Cavity was restored with Z-100 composite resin. Pits and fissures were then sealed with Teethmate F-1 Group 3 : Cavity was restored with Z-100 composite resin Pits and fissures were then sealed with Ultraseal XT-plus Group 4 : Cavity and pits and fissures were restored with Ultraseal XT-plus altogrether Group 5 : Cavity was restored with Ultraseal XT-plus. Pits and fissures were then sealed with the same material. After restoration, the samples were thermocycled 500 times between $5^{\circ}C$ and $55^{\circ}C$ with a dwell time of 30 seconds. After thermocycling, the samples were dipped into 1% methylene blue solution for 24 hours, then rinsed with tap water. The teeth were then embedded in resin and cut buccolingually along the tooth axis and observed with a stereomicroscope to determine the degree of microleakage. The results were as follows : 1. Group 4 showed the greatest microleakage, while group 3, showed the least. The mean microleakage decreased in the following order:4>1>5>2>3. 2. There was no stastically significant difference between group 1 and group 5(p>0.05). However, group 1 showed significantly greater microleakage compared to group 2 and 3(p<0.05) Group 1 showed significantly less microleakage compared to group 4(p<0.05). 3. Group 2 showed no statistically significant difference compared to group 3(p>0.05). However group 2 showed significantly less microleakage compared to group 4 and 5(p<0.05) 4. Group 3 showed significantly less microleakage compared to group 4 and 5(p<0.05). 5. Group 5 showed significantly less microleakage than group 4(p<0.05).

  • PDF