• Title/Summary/Keyword: University factors

Search Result 60,441, Processing Time 0.093 seconds

A Study on the Heavy Metals Concentrations in the Air of the Dental Laboratories, in the Blood and Urine of Dental Laboratory Technicians (치과기공실 공기중 및 치과기공사의 혈액, 요중 중금속 함량에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.10 no.1
    • /
    • pp.11-24
    • /
    • 1988
  • The purpose of this study was to determine the concentration of cadmium, nickel and chromium in the air of the work-place, blood of and urine of workers and compare the level of those heavy metals by the duration of work, work-place, process of work, smoking and other factors. In this study, 48 male dental laboratory technicans and 72 office workers as the control group were subjected. The concentration of cadmium, nickel and chromium in their blood sand urine, and that of heavy metals in the air of their work-rooms were examined and analyzed from June I 1987 to September 30, 1987. The results were as follows : 1. The concentration of cadmium in the air was the highest in the porcelain part, $0.0087{\pm}0.0016mg/m^3$, that of nickel was the highest in the crown bridge part, $0.4253{\pm}0.0052mg/m^3$, and that of chrnmium was highest in the partial denture part, $0.1063{\pm}0.0024mg/m^3$. 2. cadmium, nickel and chromium concentrations in the blood and urine of dental laboratory techincians were higher that in the office workers'. Especially the concentration of cadmium in the blood($1.92{\pm}1.23{\mu}g$/100ml) of th dental laboratory techician was about two times as high as that in the office workers'($0.90{\pm}0.73{\mu}g$/100ml), and the concentration of nickel in the urine($48.53{\pm}38.83{\mu}g$/e) of the dental laboratory thchnician was about two times as high as that in the office worker's($20.24{\pm}15.35{\mu}g$/e). 3. there was no difference in the concentration of cadmium, nickel and chromium in the blood and urine with a longer duration of work. 4. The concentration of cadmium and chromium in the blood and urine differed significantly depending upon the place of work. The concentration of cadmium was the highest in the blood of dental laboratory technicians working kin the poreclain part marking at $2.53{\pm}1.08{\mu}g$/100ml. The chromium level was the heighest in the blood of partial denture park workers with a concentration of $3.60{\pm}1.02{\mu}g$/100ml. Concerning the level of cadmium in urine, it was the highest in the porcelain part workers with a concentration of $3.41{\pm}3.15{\mu}g$/e. 5. The concentration of cadmium in the urine of metal trimming and polishing group($2.64{\pm}2.41{\mu}g$/e) was higher than that of non-metal trimming and polishing group($1.39{\pm}1.18{\mu}g$/e). 6. The concentration of chromium in the blood of smoking group($2.46{\pm}1.54{\mu}g$/100ml)was higher than that lf non-smoking group($1.54{\pm}1.25{\mu}g$/100ml). 7. The height positive correlation coefficient was shown between the concentration of nickel and chromium in the blood among the all correlations between 3metals(Cd, Ni, Cr) in the blood and those in urine. The correlation coefficient was relatively high(r=0.605,,p<0.01). In general, the higher the concentration of heavy metals in the air of work places the higher the concention lf them in the blood and urine of workers, mere attention should be paid to the working environment of dental laboratory workers, Furthermore, continuous biological monitoring and further research are required for an efficient health management for dental laboratory workers.

  • PDF

The Effect of Estrogen on the Transcription of the Insulin-like Growth Factor-I Gene in the Uterus (자궁 내 insulin-like growth factor-I 유전자 발현에 미치는 에스트로겐의 영향)

  • Kwak, In-Seok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.593-597
    • /
    • 2009
  • The uterus plays a critical role in pregnancy and steroid hormones, and both estrogen (E2) and progesterone (P4) especially play important roles in the cross-talk between embryos and uterus to support the pregnancy. E2 stimulates uterine growth during early pregnancy to prepare for implantation of embryos. This cross-talk during the implantation period involves hormones (E2 and P4) and growth factors, including insulin-like growth factor-I (IGF-I). In the uterus of a pregnant pig, the action of E2 is mediated by estrogen receptor-${\beta}$ (ER-${\beta}$). The expression of ER-a was much higher in early pregnancy than in mid- and late- pregnancy, suggesting E2 secretion from embryos enhances transcription of ER-a during early pregnancy. In order to prove whether IGF-I is an E2 target gene, quantitative real-time PCR was performed on ovariectomized murine uterus with E2 and/or P4 treatment(s). Increased IGF-I mRNA expression was observed with E2 treatment, however, it was not significantly induced by P4 treatment, which clearly demonstrates that, in mice, E2 depends on the activation of uterine IGF-I gene expression. The expression of IGF-I in the uterus of pigs was much higher in early pregnancy than in mid- and late- pregnancy and these data exhibited the same expression pattern with the ER-${\beta}$ gene expression in the uterus. It suggests that a positive co-relationship between IGF-I and ER-${\beta}$ expression exists in the uterus, and that both gene expressions of IGF-I and ER-${\beta}$ are regulated by E2. It further suggests that uterine the IGF-I gene expression might be initiated by E2 secreted from embryos to increase ER-${\beta}$ gene expression, and that this increased ER-${\beta}$ further stimulates the expression of IGF-I in the uterus during early pregnancy.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Geochemical Characteristics and Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2007 (spring season) (2007년 봄철 대전지역에서 발생한 황사 및 대기부유물의 지구화학적 특성 및 중 금속의 오염도)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;Bae, Beob-Geun
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.217-235
    • /
    • 2012
  • We evaluated the geochemical characteristics and their potential pollution of Asian Dusts in Daejeon, Korea during spring 2007. Compared with the chemical compositions of soils in source area of Asian Dust, those of aerosols in Daejeon were enriched with trace elements (ten to hundred fold), inferring that pollutants from China have affected on local environment in adjoining country such as Korea. Chemical analysis of aerosols during Asian dust showed that fine particles ($PM_{2.5}$) contained high contents of trace elements such as Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc and Y. In the case of TSP (Total Suspended Particle), Zr, Sr, Ba, Li, Th and U were contained much more than other trace elements. The contents of some elements (i.e. Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr and Sc) in aerosols collected in Asian Dust period, which are not likely enriched by air pollutants, were higher (2 - 4.2 fold) than those in Non Asian Dust period, indicating that these elements could be used as indicator elements for determining the occurrence of Asian Dust phenomena (especially, Sr, V, Cr & Li). In the case of Asian Dust coming through the big cities and/or industrial areas of China, the domestic aerosols had higher contents of trace elements (such as S, Cd, Zn, Pb, Cu, Mo and As) than those from Northeastern China via North Korea, indicating that the transportation courses of air mass are very important to determine the pollution degrees. Using the enrichment factors of trace elements in aerosols during Asian Dust and Non Asian Dust, we identified that some elements (i.e. S, Zn, Cu, Pb, As, Mo and Cd) were most problematic in terms of environmental hazard aspects, and these elements could affect adverse effects on human health as well as ecosystem and surface environment (soil and water) through long-lived precipitation.

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay (동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구)

  • Lee, Han Soo;Komaguchi, Tomoaki;Yamamoto, Atsushi;Hara, Masanori
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.335-347
    • /
    • 2013
  • In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

A Field Survey and Analysis of Ground Water Level and Soil Moisture in A Riparian Vegetation Zone (식생사주 역에서 지하수위와 토양수분의 현장 조사·분석)

  • Woo, Hyo-Seop;Chung, Sang-Joon;Cho, Hyung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.797-807
    • /
    • 2011
  • Phenomenon of vegetation recruitment on the sand bar is drastically rising in the streams and rivers in Korea. In the 1960s prior to industrialization and urbanization, most of the streams were consisted of sands and gravels, what we call, 'White River'. Owing to dam construction, stream maintenance, etc. carried out since the '70s, the characteristic of flow duration and sediment transport have been disturbed resulting in the abundance of vegetation in the waterfront, that is, 'Green River' is under progress. This study purposed to identify the correlation among water level, water temperature, rainfall, soil moisture and soil texture out of the factors which give an effect on the vegetation recruitment on the sand bar of unregulated stream. To this purpose, this study selected the downstream of Naeseong Stream, one of sand rivers in Korea, as the river section for test and conducted the monitoring and analysis for 289 days. In addition, this study analyzed the aerial photos taken from 1970 to 2009 in order to identify the aged change in vegetation from the past to the present. The range of the tested river section was 361 m in transverse length and about 2 km in longitudinal length. According to the survey analysis, the tested river section in Naeseong Stream was a gaining river showing the higher underground-water level by 20~30 m compared to Stream water level. The difference in the underground water temperature was less than $5^{\circ}C$ by day and season and the Stream temperature did not fall to $10^{\circ}C$ and less from May when the vegetation germination begins in earnest. The impact factor on soil moisture was the underground water level in the lower layer and the rainfall in the upper layer and it was found that all the upper and lower layer were influenced by soil particle size. The soil from surface to 1 m-underground out of 6 soil moisture-measured points was sand with the $D_{50}$ size of 0.07~1.37 mm and it's assumed that the capillary height possible in the particle size would reach around 14~43 cm. On the other hand, according to the result of space analysis on the tested river section of unregulated stream for 40 years, it was found that the artificial disturbance and drought promoted the vegetation recruitment and the flooding resulted in the frequency extinction of vegetation communities. Even though the small and large scales of recruitment and extinction in vegetation have been repeated since 1970, the present vegetation area increased clearly compared to the past. It's found that the vegetation area is gradually increasing over time.

Analysis on on the Leaf Growth and Changes of Photosynthetic Characterization by Leaf Position in 'Changhowon Hwangdo' Peach (복숭아 '장호원황도'의 엽위별 잎 발달과 광합성능의 변화에 대한 분석)

  • Yoon, Ik Koo;Yun, Seok Kyu;Jun, Ji Hae;Nam, Eun Young;Kwon, Jung Hyun;Bae, Hae Jin;Moon, Byung Woo;Kang, Hee Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.361-365
    • /
    • 2013
  • To investigate factors determining peach fruit quality, chlorophyll content by leaf positions, chlorophyll content of foliated leaf, change of leaf area, and photosynthetic capacity were monitored. Photosynthetic rate in response to radiation intensity and $CO_2$ concentration, and change of sucrose content after shading treatment also were investigated. Chlorophyll content was similar in $5-12^{th}$ leaves after 10 days of foliation, while young $13-16^{th}$ leaves showed lower chlorophyll contents. Chlorophyll content was 2.56 ${\mu}g/cm^2$ on May $28^{th}$, just after foliation, and rapidly increased up to 6.35 ${\mu}g/cm^2$ on June $12^{th}$. After this point, chlorophyll content gradually increased during two months showing the highest value of 9.03 ${\mu}g/cm^2$ on August $14^{th}$. Leaf area was 27.1 $cm^2$ just after foliation and 37.7 $cm^2$ on $10^{th}$ day of foliation increasing 10.6 $cm^2$ during 10 days. Leaf area slowly increased by 3.9 $cm^2$ during next one month. Photosynthetic capacity increased rapidly until the $30^{th}$ day of foliation showing the highest capacity of 13.8 ${\mu}mol/m^{-2}/sec^{-1}$. After this point, photosynthetic capacity decreased sharply. Photosynthetic rate in response to radiation intensity increased rapidly until the PPFD reached to 600 ${\mu}mol/m^{-2}/sec^{-1}$ and increased gradually from 600 ${\mu}mol/m^{-2}/sec^{-1}$ to 1200 ${\mu}mol/m^{-2}/sec^{-1}$ of PPFD and stayed stable beyond this point. Photosynthetic rate in response to $CO_2$ concentration increased until 600 ppm of $CO_2$. At higher $CO_2$ concentration, photosynthetic rate stayed stable or decreased. Sucrose content in leaves was not significantly different between control and shading group until one hour of shading treatment while decreased in shading group after two hours of treatment.

Variation of Panicle Differentiation Stage by Leaf Growth According to Rice Cultivars and Transplanting Time (품종과 이앙시기별 엽 생장속도에 의한 벼의 유수분화시기 변화)

  • Ku, Bon-Il;Kang, Shin-Ku;Sang, Wan-Gyu;Choi, Min-Kyu;Lee, Kyu-Jone;Park, Hong-Kyu;Kim, Young-Doo;Kim, Bo-Kyong;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.353-361
    • /
    • 2013
  • The time of panicle initiation change by transplanting date, and this change is affected by heading ecotype and seedling age. So we assessed the variations of panicle initiation, spikelet differentiation and heading date affected by transplanting dates, rice cultivars and seedling ages. And we compared the growth durations and meterological factors between chief growth stages. The differences of growth duration from transplanting date to spikelet differentiation by seedling age were 1~3 days in all transplanting of Unkwang, but it increased to 4 days in Hwayeong transplanting on May 1 and June 30, and Nampyeong transplanting on June 30. The growth durations from panicle initiation to heading of Unkwang and Hwayeong increased until transplanting time by May 31, and decreased thereafter. The growth durations of Nampyeong increased in transplanting on May 16 and May 31. In each transplanting, mean temperature of 30 days after heading was highest in early transplanting, but sunshine hours in the period were highest in transplanting on June 30 in Unkwang, in transplanting on June 15 in Hwayeong, and higher in transplanting on May 31 and June 15 in Nampyeong. The growth duration between spikelet differentiation and heading showed variation according to rice cultivars and transplanting date, Those were 22~26 days in Unkwang, 21~27 days in Hwayeong and 21~28 days in Nampyeong.

Re-Analysis of Clark Model Based on Drainage Structure of Basin (배수구조를 기반으로 한 Clark 모형의 재해석)

  • Park, Sang Hyun;Kim, Joo Cheol;Jeong, Dong Kug;Jung, Kwan Sue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2255-2265
    • /
    • 2013
  • This study presents the width function-based Clark model. To this end, rescaled width function with distinction between hillslope and channel velocity is used as time-area curve and then it is routed through linear storage within the framework of not finite difference scheme used in original Clark model but analytical expression of linear storage routing. There are three parameters focused in this study: storage coefficient, hillslope velocity and channel velocity. SCE-UA, one of the popular global optimization methods, is applied to estimate them. The shapes of resulting IUHs from this study are evaluated in terms of the three statistical moments of hydrologic response functions: mean, variance and the third moment about the center of IUH. The correlation coefficients to the three statistical moments simulated in this study against these of observed hydrographs were estimated at 0.995 for the mean, 0.993 for the variance and 0.983 for the third moment about the center of IUH. The shape of resulting IUHs from this study give rise to satisfactory simulation results in terms of the mean and variance. But the third moment about the center of IUH tend to be overestimated. Clark model proposed in this study is superior to the one only taking into account mean and variance of IUH with respect to skewness, peak discharge and peak time of runoff hydrograph. From this result it is confirmed that the method suggested in this study is useful tool to reflect the heterogeneity of drainage path and hydrodynamic parameters. The variation of statistical moments of IUH are mainly influenced by storage coefficient and in turn the effect of channel velocity is greater than the one of hillslope velocity. Therefore storage coefficient and channel velocity are the crucial factors in shaping the form of IUH and should be considered carefully to apply Clark model proposed in this study.