• Title/Summary/Keyword: University Sport Center

Search Result 436, Processing Time 0.021 seconds

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

A Study on the Installation of a Barrier to Prevent Large-Scale Traffic Accidents in Tunnel

  • Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.161-168
    • /
    • 2019
  • Traffic accidents in tunnel can lead to large traffic accidents due to narrow and dark road characteristics. Therefore, special care of the driver is required when is driving in a tunnel. However, accidents can happen at any time. In the event of an accident, a narrow road structure may lead to a second accident. Therefore, all facilities installed inside the tunnel should be allowed to minimize damage in the event of an accident. We confirmed the safety of the collision target through the action of the sedan, Sport Utility Vehicle (SUV) and truck when the vehicle crashed into a stairway installed on the tunnel emergency escape route, and when a concrete barrier or guard rail was installed in front of the stairway. The behavior of the vehicle has resulted in a total of three results: rollover or rollover, change of speed and angle of the vehicle after collision. The sedan and SUV were the most secure when colliding with the guardrail, but considering the truck as a whole, concrete barriers were judged to be the most suitable for minimizing damage from the first accident and reducing the risk of the second accident.

Saengmaeg-san as an ergogenic aid: improving exercise performance

  • Kwak, Jae-Jun;Yook, Jang Soo;Jeong, Woo-Min;Kim, Ji-Sun;Ha, Min-Seong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1314-1322
    • /
    • 2020
  • Sports drinks help optimize and improve performance by delaying and eliminating the buildup of fatigue-causing substances in the body during exercise. Saengmaeg-san is a nature-friendly traditional beverage that has no side effects on the human body and can quench thirst. However, studies on the relationship between exercise ability and Saengmaeg-san are insufficient. The purpose of this study was to prescribe Saengmaeg-san during the summer training period of 4 weeks and to analyze the effect on body composition and exercise performance. Seventeen male participants were divided into 3 groups (Saengmaeg-san acid intake group [n=9], placebo group [n=8]), and body composition (height, weight, muscle mass, fat mass, BMI) and conducted exercise performance (total exercise time and HRmax). In our study, Saengmaeg-san intake had a positive effect on exercise performance, such as decreased body fat percentage, increased exercise time, and decreased HRmax. Therefore, Saengmaeg-san showed the potential as a sports drink. In the future, additional studies on fatigue-related substances, immune function-markers, and blood lipids are needed in order to clearly explain the change in exercise performance due to consumption of Saengmaeg-san.

Sport Psychological Application's Instance for the Kinesthetic Gifted Children's Selection and Upbringing (체육영재 선발 및 육성을 위한 스포츠 심리학의 현장적용 사례)

  • Ahn, Jeong-Deok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.440-450
    • /
    • 2010
  • This study was an analysis of sport psychological application for the kinesthetic gifted children's selection and upbringing in Pusan University's center for kinesthetic gifted children from 2009.7 to 2010.2. The 60(athletics: 40, swimming: 10, gymnastics: 10) of kinesthetic gifted children were selected among the first, second and third year students from Pusan, Ulsan and Kyungsang-namdo without distinction of sex. We progressed summer and winter camp during vacation, and managed a special training program according to exercise items on every Saturday. We attempted experimental a field application, and obtained the following implications. First, the first and second year students were possible to test psychological measurement with supplementary explanation, and in the case of third grade, it was enough possible without any supplementary explanation. Second, multi-intelligence test was efficient as the method to check kinesthetic gifted children's intelligence and useful as the basic data for counseling. Third, the character types of kinesthetic gifted children were appeared preferring outgoing, intuition and emotions. Forth, with the FAIR concentration, we confirmed that the center's program effected positively on improving concentration. Fifth, we found the potential that the physical task commitment questionnaire and the exercise activity self-administer questionnair would be used as official psychological measurement tool after the review process of additional validity and reliability.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

The Effects of Wearing Roller Shoes on Muscle Activity in The Lower Extremity During Walking (롤러신발과 일반신발의 착용 후 보행 시 하지근의 근전도 비교)

  • Chae, Woen-Sik;Lim, Young-Tae;Lee, Min-Hyung;Kim, Jung-Ja;Kim, Youn-Joung;Jang, Jae-Ik;Park, Woen-Kyoon;Jin, Jae-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to compare muscle activity in the lower extremity during walking wearing jogging and roller shoes. Twelve male middle school students (age: 15.0 yrs, height 173.7 cm, weight 587.7 N) who have no known musculoskeletal disorders were recruited as the subjects. Seven pairs of surface electrodes (QEMG8, Laxtha Korea, gain = 1,000, input impedance >$1012{\Omega}$, CMMR >100 dB) were attached to the right-hand side of the body to monitor the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and medial (GM) and lateral gastrocnemius (GL) while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and EMG recordings. EMG data were filtered using a 10 Hz to 350 Hz Butterworth band-passdigital filter and further normalized to the respective maximum voluntary isometric contraction EMG levels. For each trial being analyzed, five critical instants and four phases were identified from the recording. Averaged IEMG and peak IEMG were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). The VM, TA, BF, and GM activities during the initial double limb stance and the initial single limb stance reduced significantly when going from jogging shoe to roller shoe condition. The decrease in EMG levels in those muscles indicated that the subjects locked the ankle and knee joints in an awkward fashion to compensate for the imbalance. Muscle activity in the GM for the roller shoe condition was significantly greater than the corresponding value for the jogging shoe condition during the terminal double limb stance and the terminal single limb stance. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the GM activity for the roller shoe condition increased. It seems that there are differences in muscle activity between roller shoe and jogging shoe conditions. The differences in EMG pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine joint kinematics during walking with roller shoes.

A Carbohydrate Fraction, AIP1, from Artemisia Iwayomogi Reduces the Action Potential Duration by Activation of Rapidly Activating Delayed Rectifier $K^+$ Channels in Rabbit Ventricular Myocytes

  • Park, Won-Sun;Son, Youn-Kyoung;Ko, Eun-A;Choi, Seong-Woo;Kim, Na-Ri;Choi, Tae-Hoon;Youn, Hyun-Joo;Jo, Su-Hyun;Hong, Da-Hye;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.119-125
    • /
    • 2010
  • We investigated the effects of a hot-water extract of Artemisia iwayomogi, a plant belonging to family Compositae, on cardiac ventricular delayed rectifier $K^+$ current ($I_K$) using the patch clamp technique. The carbohydrate fraction AIP1 dose-dependently increased the heart rate with an apparent $EC_{50}$ value of $56.1{\pm}5.5\;{\mu}g/ml$. Application of AIP1 reduced the action potential duration (APD) in concentration-dependent fashion by activating $I_K$ without significantly altering the resting membrane potential ($IC_{50}$ value of $APD_{50}$: $54.80{\pm}2.24$, $IC_{50}$ value of $APD_{90}$: $57.45{\pm}3.47\;{\mu}g/ml$). Based on the results, all experiments were performed with $50\;{\mu}g/ml$ of AIP1. Pre-treatment with the rapidly activating delayed rectifier $K^+$ current ($I_{Kr}$) inhibitor, E-4031 prolonged APD. However, additional application of AIP1 did not reduce APD. The inhibition of slowly activating delayed rectifier $K^+$ current ($I_{Ks}$) by chromanol 293B did not change the effect of AIP1. AIP1 did not significantly affect coronary arterial tone or ion channels, even at the highest concentration of AIP1. In summary, AIP1 reduces APD by activating $I_{Kr}$ but not $I_{Ks}$. These results suggest that the natural product AIP1 may provide an adjunctive therapy of long QT syndrome.

Effects of Skill Level and Feet Width on Kinematic and Kinetic Variables during Jump Rope Single Under

  • Jang, Kyeong Hui;Son, Min Ji;Kim, Dae Young;Lee, Myeoung Gon;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the effects of skill level and width between feet on kinematic and kinetic variables during jump rope single under with both feet. Method: Fifteen subjects in the skilled group (age: $10.85{\pm}0.40yrs$, height: $142.13{\pm}5.41cm$, weight: $36.97{\pm}6.65kg$) and 15 subjects in the unskilled group (age: $10.85{\pm}0.40yrs$, height: $143.31{\pm}5.54cm$, weight: $40.81{\pm}10.39kg$) participated in this study. Results: Participants in the skilled group minimized the anteroposterior displacement of their center of mass by modifying the width between their feet and decreased the range of motion (ROM) of their trunk in the sagittal plane. The preferred width during the jump rope decreased by 5.61~6.11 cm (32~37%) in comparison to width during static standing. The induced width was increased by 16.44~16.67 cm (82~85%), regardless of skill level. The kinematic variables of the left and right legs of members of the unskilled group were significantly different from those of members in the skilled group regarding the ROM of the hip, knee, and ankle joint. Otherwise, the members of the skilled group were consistent in terms of the kinematic variables of the right and left legs. Conclusion: The preferred width between feet during the jump rope was found to be beneficial for maintaining dynamic stability. The unskilled group exhibited asymmetry in left and right motion within the ranges of motion of the ankle, knee, and hip joints, regardless of the width. Therefore, long-term accurate jump rope motions will contribute to an improvement in the left and right imbalances of the entire body.

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.