• Title/Summary/Keyword: Universal joint

Search Result 120, Processing Time 0.023 seconds

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile (자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석)

  • Kwon, Hyuk-Hong;Song, Seung-Eun;Kim, Oh-Seung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Joint User Association and Resource Allocation of Device-to-Device Communication in Small Cell Networks

  • Gong, Wenrong;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • With the recent popularity of smart terminals, the demand for high-data-rate transmission is growing rapidly, which brings a new challenge for the traditional cellular networks. Both device-to-device (D2D) communication and small cells are effective to improve the transmission efficiency of local communication. In this paper, we apply D2D communication into a small cell network system (SNets) and study about the optimization problem of resource allocation for D2D communication. The optimization problem includes system scheduling and resource allocation, which is exponentially complex and the optimal solution is infeasible to achieve. Therefore, in this paper, the optimization problem is decomposed into several smaller problems and a hierarchical scheme is proposed to obtain the solution. The proposed hierarchical scheme consists of three steps: D2D communication groups formation, the estimation of sub-channels needed by each D2D communication group and specific resource allocation. From numerical simulation results, we find that the proposed resource allocation scheme is effective in improving the spectral efficiency and reducing the outage probability of D2D communication.

Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot (다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가)

  • Yim, Sojung;Baek, Sang-Min;Lee, Jongeun;Chae, Soo-Hwan;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

Transformable eco-friendly one-touch DIY children's furniture for childr en's growth and development

  • JEON, Jin-Soo;KIM, Hyun-Joo;Han, Sul-A
    • Archives of design research
    • /
    • v.25 no.5
    • /
    • pp.113-119
    • /
    • 2012
  • Under the paradigm of 'Eco', the core of sustainability management, this study aims to establish both domestic and international markets and secure competitiveness in the global markets through the development of children's furniture composed of recycled and unharmful materials. Currently, in Europe and in the Western regions, the concepts of 'eco-friendly', 'children', and 'DIY' are well-placed in the daily lives of the people. On the other hand, compared to the domestic demand for eco-friendly children's furniture, the essential approach and the qualitative improvements about the subject are being slowly progressed. Particularly, the process of applying eco-friendly materials and finishing materials to the children's furnitures are mostly in a non-existent state. Thus, in this study, simple application of basic eco-friendly materials such as natural woods or imitation of overseas furniture designs were avoided to create transformable eco-friendly one-touch DIY children's furniture for children's growth and development through the application of eco-friendly processes of technology, design, and other stages of the development process. In other words, under the big category of eco-friendly children's furniture, the furniture was developed through an environmentally-friendly process of universal design that is suitable for children of all ages, and thus, ultimately maximizing the economical effective value and reducing consumption of resources and environmental pollutions.

A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods (납착 방법에 따른 교정용 와이어의 기계적 특성 비교)

  • Lee, Hye-Jin;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

Understanding of 3D Human Body Motion based on Mono-Vision (단일 비전 기반 인체의 3차원 운동 해석)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.193-200
    • /
    • 2011
  • This paper proposes a low-cost visual analyzer algorithm of human body motion for real-time applications such as human-computer interfacing, virtual reality applications in medicine and telemonitoring of patients. To reduce cost of its use, we design the algorithm to use a single camera. To make the proposed system to be used more conveniently, we avoid from using optical markers. To make the proposed algorithm be convenient for real-time applications, we design it to have a closed-form with high accuracy. To design a closed-form algorithm, we propose an idea that formulates motion of a human body joint as a 2D universal joint model instead of a common 3D spherical joint model, without any kins of approximation. To make the closed-form algorithm has high accuracy, we formulates the estimation process to be an optimization problem. Thus-desined algorithm is applied to each joint of the human body one after another. Through experiments we show that human body motion capturing can be performed in an efficient and robust manner by using our algorithm.

Laparoscope Manipulator Control for Minimally Invasive Surgery (최소침습수술을 위한 복강경 매니퓰레이터 제어)

  • Kim, Soo-Hyun;Kim, Kwang-Gi;Jo, Yung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

A Universal Method for Constructing DH parameters from Unified Robot Description Format (URDF로부터 DH 파라미터를 구성하는 일반적인 방법)

  • Byeonggi Yu;Junyoung Lee;Sang hyun Park;Maolin Jin
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • This paper introduced how to construct Denavit-Hartenberg (DH) parameters from the Unified Robot Description Format (URDF). URDF is convenient for describing a robot even though the robot is very complex. On the other hand, DH convention is not an easy notation for many novices who want to describe a robot. Therefore, most vendors provide URDF and users prefer to use URDF to describe a robot. However, some controllers or algorithms are based on DH parameters to perform kinematics, dynamics, control, etc. To connect URDF and DH parameters, we present a three-step approach to construct DH parameters from URDF. The first step is to define the joint axis for constructing DH parameters. The second step is constructing DH parameters to define joint character. The final step is constructing DH parameters to define the coordinate frame of the child link. This approach is based on intuitive vector calculation and guarantees the uniqueness of DH parameters. To verify our approach, we applied our approach to a simple one-link robot, a manipulator with 6 DOF, and a quadruped robot with 3 DOF per leg. We verified that our approach worked well based on forward kinematic results.