• Title/Summary/Keyword: Universal Thermal Climate Index(UTCI)

Search Result 10, Processing Time 0.024 seconds

Changes in the External Heat Environment of Building Evaporative Cooling Systems in Response to Climate Change (기후변화 대응 건축물 기화냉각시스템 적용에 따른 외부 열환경 변화 연구)

  • Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1261-1269
    • /
    • 2018
  • The purpose of this study was to investigate changes in the external thermal environment, following the application of evaporative cooling systems in buildings, in response to climate change. In order to verify changes in the external thermal environment, a T-test was performed on the microclimate, Thermal Comfort Index (TCI), and building surface temperature. Differences in microclimate, following the application of the evaporative cooling system in the building, were significant in terms of temperature and relative humidity. In particular, temperature decreased by more than 7% when the evaporative cooling system was applied. According to the results of the Thermal Comfort Index analysis, the Wet-Bulb Globe Temperature (WBGT) was below the limit of outdoor activities, indicating that outdoor activities were possible. The Universal Thermal Climate Index (UTCI) values were within the very strong heat stress range when the evaporative cooling system was not applied, When the system was applied, the UTCI values were within the strong heat stress range, indicating that they were lowered by one level. The building surface temperature decreased by ~10% or more when the evaporative cooling system was applied, compared to when it was not applied. Finally, the outside surface temperature of the building decreased by ~12% or more when the system was applied, compared to when it was not applied. We conclude that the energy saving effect of the building was significant.

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation (ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석)

  • Lim, Hyeonwoo;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.1-22
    • /
    • 2022
  • The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

Effects of Urban Park on Thermal Comfort in Summer - An Analysis of Microclimate Data of Seoul Forest Park - (여름철 도시공원의 열환경 개선 효과 - 서울숲 미기상 관측자료 분석을 중심으로 -)

  • Zoh, Hyunmin Daniel;Kwon, Tae Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.30-41
    • /
    • 2022
  • This study investigates the heat mitigation effects and thermal comfort improvement due to urban parks during summer. Self-developed monitoring devices to measure long-term microclimate data were installed in three spots, including the park plaza, waterside, and roadside in Seoul Forest Park, and measurements were taken from July 9 to July 30. The results of the measurement are as follows. The daily temperature of the park plaza and waterside were found to be 2.7℃ and 2.9℃ lower than the roadside and 5.5℃ and 7.4℃ lower than the roadside from 10:00 to 16:00. In addition, the Universal Thermal Climate Index (UTCI) measurement was applied to measure the thermal comfort at each point. In the average daily analysis, a significant difference was found between the park plaza, the waterside, and the roadside, and a greater difference was found between 10:00 to 16:00. Also, although there was no significant difference due to the weather condition, a statistically significant difference was also found in the average PM10 and CO2 concentrations. It is found to be higher in the order from the roadside, park plaza, and waterside for PM10 concentration and park plaza, roadside, and waterside for CO2. In sum, although the difference in measured microclimate data and thermal comfort index results were different depending on the time and weather conditions at the three points, the park plaza and waterside, which are located inside the park, showed improved thermal comfort conditions and lower temperatures than the roadside outside the park.

Analysis of the Influence of Street Trees on Human Thermal Sensation in Summer (여름철 인간 열환경지수에 미치는 가로수의 영향 분석)

  • Jo, Sang-man;Hyun, Cheol-ji;Park, Soo-kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.105-112
    • /
    • 2017
  • In order to analyze the effect of street trees on human thermal sensation(thermal comfort) in summer, microclimatic data were measured and analyzed at sunny and shaded locations of two deciduous broadleaf and three broadleaf evergreen species of street trees. As a result, the mean differences by species in air temperature, relative humidity and wind speed were small: $0.2{\sim}1.5^{\circ}C$, 0.9~5.3% and $0.1{\sim}0.5 ms^{-1}$, respectively, but the mean difference in the mean radiant temperature was great, $27.1^{\circ}C$. In the results of physiological equivalent temperature(PET) and universal thermal climate index(UTCI), which are human thermal sensation(thermal comfort) indexes, the shaded locations by the trees showed mean reduction rates of 21.2~31.3% in the PET compared with the sunny location, which are equivalent to 1.5~2.5 levels of thermal perception. Also, 12.7~20.0% in the UTCI was reduced by the trees' shadows, which is equivalent to 1~1.5 levels of heat stress. In addition, although the broadleaf evergreen trees had 5% greater mean reduction in PET than that of the deciduous broadleaf trees, the Zelkova serrata that belonged to the deciduous broadleaf trees showed the equivalent thermal reduction effect as the broadleaf evergreen trees because of the high density of branches and leaves. Therefore, the mean radiant temperature and the density of the crown(branches and leaves) were the main influences in thermal modification by these street trees in summer.

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

The Effects of Street Tree's Vertical Structures on Thermal Comfort (열쾌적성에 대한 가로수 수직적 구조의 영향 분석)

  • Lee, Su-Been;Choe, Hye-Yeong;Jo, Hyun-Kil;Yun, Young-Jo;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • Urban green spaces offer a variety of benefits to living things and humans. However, existing green spaces have been reduced and fragmented due to urbanization, and there is a limit to creating new large green spaces in densely developed cities. Street trees have fewer restrictions on land use, which can be a measure to secure green areas in cities. In Korea, excessive pruning is being done on some street trees for reasons such as blocking of building signboards, contact with electric wires, and restrictions on sidewalk widths. Therefore, it is necessary to quantitatively understand the relationship between the benefits provided by street trees and their structures to come up with an efficient and systematic planning and management plan for urban street trees. In this study, we quantitatively analyzed the relationship between the thermal comfort improvement by the shades of street trees and the vertical structure, planting environment, and types of street trees. To calculate the thermal comfort felt by human body, we calculated UTCI (Universal Thermal Climate Index) of each street tree. For the vertical structure of street trees, we used Terrestrial LiDAR and the point clouds of street tree's crown was sliced vertically at 1m intervals. We conducted a multiple regression analysis on the thermal comfort improvement using the variables we obtained from fields. As a result, in the case of a street tree's vertical structure, the lager the volume of tree's crown located 3-4m (β=0.298, p<.05) and 6-7m (β=0.568, p<.001) above clear length, the better the cooling effect. In addition, the thermal comfort improvement was assessed to decrease as the DBH increased (β=-0.435, p<.001). In general, the crown diameter and DBH are positively correlated, with a cooling effect occurring as crown diameter increases. In this study, the opposite result was obtained due to the small number of trees measured, so additional research is needed by increasing the number of tree samples. In the case of the planting environment, the effect of improving thermal comfort was higher in the shaded area of trees planted to the south (β=-0.541, p<.001). Since unsystematic management of street trees can deteriorate the function of them, quantitative evaluations of the vertical structure of street trees are required, which can provide specific measures for planning and management of urban street trees with thermal comfort effect.

Human Thermal Sensation and Comfort of Beach Areas in Summer - Woljeong-ri Beach, Gujwa-eup, Jeju-si, Jeju Special Self-Governing Province - (여름철 해변지역의 인간 열환경지수 및 열쾌적성 - 제주특별자치도 제주시 구좌읍 월정리 해변 -)

  • Park, Sookuk;Sin, Jihwan;Jo, Sangman;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.100-108
    • /
    • 2016
  • The climatic index for tourism(CIT) has recently been advanced, which includes complete human energy balance models such as physiological equivalent temperature(PET) and universal thermal climate index(UTCI). This study investigated human thermal sensation and comfort at Woljung-ri Beach, Jeju, Republic of Korea, in spring and summer 2015 for landscape planning and design in beach areas. Microclimatic data measurements and human thermal sensation/comfort surveys from ISO 10551 were conducted together. There were 869 adults that participated. As a result, perceptual and thermal preference that consider only physiological aspects had high coefficients of determination($r^2$) with PET in linear regression analyses: 92.8% and 87.6%, respectively. However, affective evaluation, personal acceptability and personal tolerance, which consider both physiological and psychological aspects, had low $r^2s$: 60.0%, 21.1% and 46.4%, respectively. However, the correlations between them and PET were all significant at the 0.01 level. The neutral PET range in perceptual for human thermal sensation was $25{\sim}27^{\circ}C$, but a PET range less or equal to 20% dissatisfaction, which was recommended by ASHRAE Standard 55, could not be achieved in perceptual. Only PET ranges in affective evaluation and personal tolerance affected by both aspects were qualified for the recommendation as $21{\sim}32^{\circ}C$ and $17{\sim}37^{\circ}C$, respectively. Therefore, the PET range of $21{\sim}32^{\circ}C$ is recommended to be used for the human thermal comfort zone of beach areas in landscape planning and design as well as tourism and recreational planning. PET heat stress level ranges on the beach were $2{\sim}5^{\circ}C$ higher than those in inland urban areas of the Republic of Korea. Also, they were similar to high results of tropical areas such as Taiwan and Nigeria, and higher than those of western and middle Europe and Tel Aviv, Israel.