DOI QR코드

DOI QR Code

Human Thermal Sensation and Comfort of Beach Areas in Summer - Woljeong-ri Beach, Gujwa-eup, Jeju-si, Jeju Special Self-Governing Province -

여름철 해변지역의 인간 열환경지수 및 열쾌적성 - 제주특별자치도 제주시 구좌읍 월정리 해변 -

  • Park, Sookuk (Research Institute for Subtropical Agriculture and Animal Biotechnology, SARI, Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Sin, Jihwan (Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Jo, Sangman (Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Hyun, Cheolji (Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Kang, Hoon (Research Institute for Subtropical Agriculture and Animal Biotechnology, SARI, Horticultural Science, College of Applied Life Science, Jeju National University)
  • 박수국 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공.아열대농업생명과학연구소.친환경농업연구소) ;
  • 신지환 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공) ;
  • 조상만 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공) ;
  • 현철지 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공) ;
  • 강훈 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공.아열대농업생명과학연구소.친환경농업연구소)
  • Received : 2016.03.14
  • Accepted : 2016.08.29
  • Published : 2016.08.31

Abstract

The climatic index for tourism(CIT) has recently been advanced, which includes complete human energy balance models such as physiological equivalent temperature(PET) and universal thermal climate index(UTCI). This study investigated human thermal sensation and comfort at Woljung-ri Beach, Jeju, Republic of Korea, in spring and summer 2015 for landscape planning and design in beach areas. Microclimatic data measurements and human thermal sensation/comfort surveys from ISO 10551 were conducted together. There were 869 adults that participated. As a result, perceptual and thermal preference that consider only physiological aspects had high coefficients of determination($r^2$) with PET in linear regression analyses: 92.8% and 87.6%, respectively. However, affective evaluation, personal acceptability and personal tolerance, which consider both physiological and psychological aspects, had low $r^2s$: 60.0%, 21.1% and 46.4%, respectively. However, the correlations between them and PET were all significant at the 0.01 level. The neutral PET range in perceptual for human thermal sensation was $25{\sim}27^{\circ}C$, but a PET range less or equal to 20% dissatisfaction, which was recommended by ASHRAE Standard 55, could not be achieved in perceptual. Only PET ranges in affective evaluation and personal tolerance affected by both aspects were qualified for the recommendation as $21{\sim}32^{\circ}C$ and $17{\sim}37^{\circ}C$, respectively. Therefore, the PET range of $21{\sim}32^{\circ}C$ is recommended to be used for the human thermal comfort zone of beach areas in landscape planning and design as well as tourism and recreational planning. PET heat stress level ranges on the beach were $2{\sim}5^{\circ}C$ higher than those in inland urban areas of the Republic of Korea. Also, they were similar to high results of tropical areas such as Taiwan and Nigeria, and higher than those of western and middle Europe and Tel Aviv, Israel.

최근에 관광기후지수가 생리등가온도(PET)와 범용열기후지수(UTCI)와 같은 완전한 인간 에너지 균형 모델들을 포함함으로써 발전되어 오고 있다. 이 연구는 해변에서의 조경계획 및 설계를 위해, 2015년 봄과 여름에 대한민국 제주특별자치도 월정리해변에서 인간 열환경지수 및 열쾌적성을 조사하였다. 미기후 측정과 국제표준화기구 10551을 바탕으로 만들어진 설문조사를 동시에 실시하였으며, 성인 869명이 참가하였다. 그 결과, 생리적인 요소만 고려된 '열환경 지각'과 '열환경 선호도'가 선형 회귀 분석에서 생리등가온도와 92.8과 87.6%의 높은 결정계수를 나타내었다. 그러나, 생리적 요소와 심리적 요소 둘 다 고려된 '열환경 평가', '열환경 수용도'와 '열환경 부담도'에서는 60.0, 21.1, 46.4%로 낮은 결정계수를 보였다. 그렇지만, 생리등가온도와의 상관성 분석에서는 모두 0.01 레벨에서 유의성이 있는 것으로 나타났다. 인간 열환경 지수를 나타내는 '열환경 지각'에서 덥지도 춥지도 않는 '중간'의 생리등가온도의 범위는 $25{\sim}27^{\circ}C$로 나타났으나, 미국의 냉온난방협회 표준 55에서 추천한 20% 이하의 불만족성 범위는 없었다. 다만, '열환경 평가'와 '열환경 부담도'에서 $21{\sim}32^{\circ}C$$17{\sim}37^{\circ}C$의 생리등가온도 범위들이 그 추천범위에 속하는 것으로 나타났다. 그러므로, $21{\sim}32^{\circ}C$의 생리등가온도를 해변지역의 조경계획 및 디자인뿐만 아니라 관광 및 레크리에이션 계획을 위한 인간 열쾌적성 범위로 적용될 수 있을 것이다. 해변에서의 열 스트레스 레벨들은 한국의 내륙들보다 $2{\sim}5^{\circ}C$ 높게 나타났으며, 대만과 나이지리아와 같은 열대지역과 유사한 높은 결과들을 보였고, 서 중유럽과 이스라엘의 텔아비브보다 높은 것으로 나타났다.

Keywords

References

  1. Brode, P., D. Fiala, K. Blazejczyk, I. Holmer, G. Jendritzky, B. Kampmann, B. Tinz and G. Havenith(2012a) Deriving the operational procedure for the universal thermal climate index(UTCI). International Journal of Biometeorology 56: 481-494. https://doi.org/10.1007/s00484-011-0454-1
  2. Brode, P., E. L. Kruger, F. A. Rossi and D. Fiala(2012b) Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI-a case study in southern Brazil. International Journal of Biometeorology 56: 471-480. https://doi.org/10.1007/s00484-011-0452-3
  3. Brown, R. D. and T. J. Gillespie(1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology 30: 43-52. https://doi.org/10.1007/BF02192058
  4. Brown, R. D. and T. J. Gillespie(1995) Microclimatic Landscape Design: Creating Thermal Comfortand Energy Efficiency. New York: Wiley.
  5. Cohen, P., O. Potchter andA. Matzarakis(2013) Human thermal perception of coastal mediterranean outdoor urban environments. Applied Geography 37: 1-10. https://doi.org/10.1016/j.apgeog.2012.11.001
  6. Fanger, P. O.(1972) Thermal Comfort: Analysis and Applications in Environmental Engineering. New York: McGraw-Hioo.
  7. Gal, T., M. Rzepa, B. Gromek and J. Unger(2007) Comparison between sky view factor values computed by two different methods in an urban environment, ACTA Climatologica et Chrologica, Universitatis Szegediensis, Tomus 40-41: 17-26.
  8. Hoppe, P.(1999) The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43: 71-75. https://doi.org/10.1007/s004840050118
  9. Jeong, C. and I. Yoon(1998) Human solar heat load and thermal comfort in an outdoor environment. Journal of Korean Society of Industrial Application 1(2): 65-74.
  10. Jeong, C. and I. Yoon(2001) The effect of the thermal radiation interchange of the long-wave and the solar radiation on human thermal comfort in the urban canyon. Architectural Institute of Korea 17(9): 219-226.
  11. Jeong, C., I. Yoon and Y. Choi(1999) Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer. Journal of Korea Society of Industrial Application 2(1): 19-25.
  12. Jo, H. and T. Ahn(2010) A study on greenspace planning strategies for thermal comfort and energy savings. Journal of the Korean Institute of Landscape Architecture 38(3): 23-32.
  13. Joo, C., Y. Yoon, B. Park and W. Kim(2008) The influence of land cover types on thermal comfort in urban openspace. Journal of Korean Society for People, Plants and Environment 11(3): 59-65.
  14. Ju, M., C. Lee and N. Ryu(2004) The effect of urban shade trees on the WBGT(Wet Bulb Globe Thermometer Index). Journal of the Korean Institute of Landscape Architecture 32(3): 51-59.
  15. Korea Meteorological Administration(2011) Climatological Normals of Korea. Korean Meteorological Administration, Seoul, Republic of Korea.
  16. Lee, C. and N. Ryu(2010) The influence of landscape pavements on the WBGT of outdoor spaces without ventilation or shade at summer midday. Journal of the Korean Institute of Landscape Architecture 38(2): 1-8.
  17. Lee, E.(2006) The Relationship between Urban Spatial Elements and the Thermal Comfort-The Case Study of Seoul. Master Thesis, Hanyang University, Seoul.
  18. Lee, J., D. Jung, J. Chon and Y. Song(2009) An evaluation of human thermal comfort and improvement of thermal environment by spatial structure. Proceedings of the Korean Institute of Landscape Architecture, 18-21.
  19. Lim, J., H. Hwang, D. Song and T. Kim(2008) Assessment on thermal environment and human thermal comfort in residential building block through field measurement. The Korean Solar Energy Society Autumn Annual Conference, 311-317.
  20. Lin, T. P. and A. Matzarakis(2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52: 281-290. https://doi.org/10.1007/s00484-007-0122-7
  21. Matzarakis, A. and H. Mayer(1996) Another kind of environmental stress: thermal stress. WHO News 18: 7-10.
  22. Matzarakis, A., F. Rutz and H. Mayer(2010) Modelling radiation fluxes in simple and complex environments: Basics of the RayMan Model. International Journal of Biometeorology 54(2): 131-139. https://doi.org/10.1007/s00484-009-0261-0
  23. Matzarakis, A., H. Mayer and M. G. Iziomon(1999) Application of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology 43: 76-84. https://doi.org/10.1007/s004840050119
  24. Moon, S., H. Kim and K. Lee(2010) A study on the urban climate mitigation effects with ecological landscape planning with reference to Namyang-JuWalsanli Master-plan. Journal of the KIEAE 10(6): 11-19.
  25. Nikolopoulou, M. and K. Steemers(2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings 35: 95-101. https://doi.org/10.1016/S0378-7788(02)00084-1
  26. Nikolopoulou, N., N. Baker and K. Steemers(1999) Improvements to the globe thermometer for outdoor use. Architectural Science Review 42: 27-34. https://doi.org/10.1080/00038628.1999.9696845
  27. Omonijo, A. G. and A. Matzarakis(2011) Climate and bioclimate analysis of Ondo State, Nigeria. Meteorologische Zeitschrift 20(5): 531-539. https://doi.org/10.1127/0941-2948/2011/0268
  28. Park, J., W. Jung, B. Kim, S. Yoon, J. Lee, E. Kim, G. Park, S. Kim and K. Jeong(2008) A study of the development of a Korea wind chill temperature index (III)-principal experiment for development of the Korea wind chill temperature index. Journal of the Environmental Sciences 17(10): 1093-1109. https://doi.org/10.5322/JES.2008.17.10.1093
  29. Park, S.(2011) Human-Urban Radiation Exchange Simulation Model. Ph.D. Dissertation, University of Victoria, Victoria, B.C., Canada.
  30. Park, S.(2012) Landscape planning and design methods with human thermal sensation. Journal of the Korean Institute of Landscape Architecture 40(1): 1-11.
  31. Park, S.(2013) A way for creating human bioclimatic maps using human thermal sensation(comfort) and applying the maps to urban and landscape planning and design. Journal of the Korean Institute of Landscape Architecture 41(1): 21-33. https://doi.org/10.9715/KILA.2013.41.1.021
  32. Park, S.(2014) Korean human thermal sensation and comfort model. The 20th International Congress of Biometeorology, Sept. 18-Oct. 2, 2014, Cleveland, USA.
  33. Pickup J, de Dear R(2000) An outdoor thermal comfort index (OUTSET*) part I-the model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (ed) Biometeorology and Urban Climatology at the Turn of the Millennium-selected Papers from the Conference ICB-ICUC' 99 (Sydney, 8-12 November 1999), WCASP-50, WMO/TD-No. 1026. World Meteorological Organization, Geneva, pp 279-283.
  34. Ryu, N. and C. Lee(2014) Effects for the thermal comfort index improvement of park woodlands and lawns in summer. Journal of the Korean Institute of Landscape Architecture 42(6): 21-30. https://doi.org/10.9715/KILA.2014.42.6.021
  35. Ryu, N. and C. Lee(2015) The gradient variation of thermal environments on the park woodland edge in summer-a study of Hadongsongrim and Hamyangsangrim. Journal of the Korean Institute of Landscape Architecture 43(6): 73-85. https://doi.org/10.9715/KILA.2015.43.6.073
  36. Vanos, J. K., J. S. Warland, T. J. Gillespie and N. A. Kenny(2012) Improved predictive ability of climate-human-behaviour interactions with modifications to the COMFA outdoor energy budget model. International Journal of Biometeorology 56(6): 1065-1074. https://doi.org/10.1007/s00484-012-0522-1