• Title/Summary/Keyword: Universal Mobile Telecommunications Systems

Search Result 11, Processing Time 0.025 seconds

A Novel Cross-Layer Dynamic Integrated Priority-Computing Scheme for 3G+ Systems

  • Wang, Weidong;Wang, Zongwen;Zhao, Xinlei;Zhang, Yinghai;Zhou, Yao
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • As Internet protocol and wireless communications have developed, the number of different types of mobile services has increased gradually. Existing priority-computing schemes cannot satisfy the dynamic requirements of supporting multiple services in future wireless communication systems, because the currently used factors, mainly user priority, are relatively simple and lack relevancy. To solve this problem and provide the desired complexity, dynamic behavior, and fairness features of 3G and beyond 3G mobile communication systems, this paper proposes a novel cross-layer dynamic integrated priority-computing scheme that computes the priority based on a variety of factors, including quality of service requirements, subscriber call types, waiting time, movement mode, and traffic load from the corresponding layers. It is observed from simulation results that the proposed dynamic integrated priority scheme provides enhanced performance.

Design and Implementation of Location and Activity Monitoring System Based on LoRa

  • Lin, Shengwei;Ying, Ziqiang;Zheng, Kan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1812-1824
    • /
    • 2019
  • The location and human activity are usually used as one of the important parameters to monitor the health status in healthcare devices. However, nearly all existing location and monitoring systems have the limitation of short-range communication and high power consumption. In this paper, we propose a new mechanism to collect and transmit monitoring information based on LoRa technology. The monitoring device with sensors can collect the real-time activity and location information and transmit them to the cloud server through LoRa gateway. The user can check all his history and current information through the specific designed mobile applications. Experiment was carried out to verify the communication, power consumption and monitoring performance of the entire system. Experimental results demonstrate that this system can collect monitoring and activity information accurately and provide the long rang coverage with low power consumption.

Reduction of the Retransmission Delay for Heterogeneous Devices in Dynamic Opportunistic Device-to-device Network

  • Chen, Sixuan;Zou, Weixia;Liu, Xuefeng;Zhao, Yang;Zhou, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4662-4677
    • /
    • 2018
  • The dynamic opportunistic device-to-device (DO-D2D) network will frequently emerge in the fifth generation (5G) wireless communication due to high-density and fast-moving mobile devices. In order to improve the Quality of Experience (QoE) of users with different computing capacity devices in the DO-D2D network, in this paper, we focus on the study of how to reduce the packets retransmission delay and satisfy heterogeneous devices. To select as many devices as possible to transmit simultaneously without interference, the concurrent transmitters-selecting algorithm is firstly put forward. It jointly considers the number of packets successfully received by each device and the device's connectivity. Then, to satisfy different devices' demands while primarily ensuring the base-layer packets successfully received by all the devices, the layer-cooperation instantly decodable network coding is presented, which is used to select transmission packets combination for each transmitter. Simulation results illustrate that there is an appreciable retransmission delay gain especially in the poor channel quality network compared to the traditional base-station (BS) retransmission algorithm. In addition, our proposed algorithms perform well to satisfy the different demands of users with heterogeneous devices.

ITU-T Vision

  • 김영균;도재혁
    • Information and Communications Magazine
    • /
    • v.19 no.7
    • /
    • pp.40-55
    • /
    • 2002
  • The advent of Third Generation (3G) communication systems, with their ability to process real-time multimedia applications and their large bandwidths, will greatly enhance mobile Internet access. Not only does Wideband Code Division Multiple Access (WCDMA) and cdma2000 radio technology offer an advantageous density for voice in terms of spectral efficiency, it also supports higher rates and offers differentiated levels of duality of Service (QoS) for data applications. The early introduction of packet and multimedia technologies will be a key element in realizing a quick and successful return on the operator's investments in Universal Mobile Telecommunications System (UMTS) and cdma2000.

PCS 시스템의 개요 및 전망

  • Kim, Min-Gu;Lee, Jae-Hak;Lee, Jae-Hong
    • The Magazine of the IEIE
    • /
    • v.22 no.9
    • /
    • pp.42-52
    • /
    • 1995
  • 최근 연구개발 및 표준화에 박차를 가하고 있는 Personal communication systems(PCS)의 개요 및 개발동향을 살펴보고 앞으로의 PCS 전개방향을 전망한다. 현재 여러 형태의 PCS 시스템들이 연구개발 중이며 특정기술에 의존하는 경향을 보이고 있다. 그러나 다가올 2000년대에는 이를 통합하는 표준으로서 유럽지역의 UMTS(Universal Mobile Telecommunications System)와 국제적 규모의 차세대 공중육상이롱통신 시스템인 FPLMTS/IMT-2000(Future Public Land Mobile Telecommunications System/lnternational Mobile Telecommunlcation-2000)이 확립될 것으로 보이며, 최종에는 이를 통합하는 하나의 국제표준이 형성될 것으로 본다.

  • PDF

A Handover Mechanism in Internetworking with UMTS/WLAN based on HMIPv6 (HMIPv6 기반의 UMTS/WLAN 연동 네트워크에서의 핸드오버 방안)

  • Jeong Eunjoo;Park Sangjun;Lee Hyewon K.;Kim Jaeha;Kim Byunggi
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.508-514
    • /
    • 2005
  • The research in internetworking between UMTS and WLAN, which is completed with merits and demerits, Is actively progressed to establish global roaming environments. This internetworking is classified into two groups: loosely-coupled and tightly-coupled. h tightly-coupled mechanism demands lots of investment and considerable amountof time to construct, which is directly connoted between UNTS and WLAN via IWU. On the other hand, a tersely-coupled mechanism is more scalable and easier to implement than a tightly-coupled one while it has critical drawbacks of packet loss and blocking of services due to handover delay. To alleviate these drawbacks. this work proposes a handover scheme between UMTS and WLAN, which is based on HMIPv6. The performance of the proposed scheme is evaluated by the simaulation. The proposed internetworking scheme based on HMIPv6 shows hotter performance than those based on MIPv6.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

Performance Analysis and Evaluation of Deployment in Small Cell Networks

  • Zheng, Kan;Li, Yue;Zhang, Yingkai;Jiang, Zheng;Long, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.886-900
    • /
    • 2015
  • Small cells are deployed in Heterogeneous Networks (HetNet) to improve overall performance. These access points can provide high-rate mobile services at hotspots to users. In a Small Cell Network (SCN), the good deployment of small cells can guarantee the performance of users on the basis of average and cell edge spectrum efficiency. In this paper, the performance of small cell deployment is analyzed by using system-level simulations. The positions of small cells can be adjusted according to the deployment radius and angle. Moreover, different Inter-Cell Interference Coordination (ICIC) techniques are also studied, which can be implemented either in time domain or in frequency domain. The network performances are evaluated under different ICIC techniques when the locations of Small evolved Nodes (SeNBs) vary. Simulation results show that the average throughput and cell edge throughput can be greatly improved when small cells are properly deployed with the certain deployment radius and angle. Meanwhile, how to optimally configure the parameters to achieve the potential of the deployment is discussed when applying different ICIC techniques.

Internetworking strategy between MANET and WLAN for Extending Hot-Spot of WLAN based on HMIPv6 (HMIPv6를 기반으로 한 무선 랜과 이동 애드 혹 네트워크 간의 인터네트워킹 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.38-48
    • /
    • 2006
  • For extending of hot-spot of WLAN, (2) proposes internetworking scheme between wireless LAN (WLAN) and mobile ad-hoc network (MANET), which employ the same layer-2 protocol with different mode. Compared to internetworking schemes between UMTS (Universal Mobile Telecommunications Systems) and WLAN (3-4), the scheme from (2) has relatively low overhead and latencies because WLAN and MANET are physically and logically similar to each other. However, the mode switching algorithm proposed in r2] for internetworking between WLAN and MANET only considers signal strength and determines handoff, and mobile nodes following a zigzag course in pollution area may perform handoff at short intervals. Furthermore, (2) employs mobile IPv6 (MIPv6) at base, which brings still high delay on handoff and overhead due to signal message exchange. In this paper, we present optimized internetworking scheme between WLAN and MANET, modified from (2). To settle ping-pong handoff from (2), we propose adaptive mode switching algorithm. HMIPv6 is employed for IP connectivity and mobility service in WLAN, which solves some shortcomings, such as high handoff overhead and vulnerable security. For routing in MANET, OLSR is employed, which is a proactive Protocol and has optimally reduced signal broadcasting overhead. OLSR operates with current P protocol compatibly with no change or modification. The proposed internetworking scheme based on adaptive mode switching algorithm shows better performance than scheme from (2).

Iterative Interstream Interference Cancellation for MIMO HSPA+ System

  • Yu, Hyoug-Youl;Shim, Byong-Hyo;Oh, Tae-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • In this paper, we propose an iterative interstream interference cancellation technique for system with frequency selective multiple-input multiple-output (MIMO) channel. Our method is inspired by the fact that the cancellation of the interstream interference can be regarded as a reduction in the magnitude of the interfering channel. We show that, as iteration goes on, the channel experienced by the equalizer gets close to the single input multiple output (SIMO) channel and, therefore, the proposed SIMO-like equalizer achieves improved equalization performance in terms of normalized mean square error. From simulations on downlink communications of $2{\times}2$ MIMO systems in high speed packet access universal mobile telecommunications system standard, we show that the proposed method provides substantial performance gain over the conventional receiver algorithms.