• Title/Summary/Keyword: Unity power factor

Search Result 326, Processing Time 0.049 seconds

A New Unity Power Factor Rectifier System using an Active Waveshaping Technique

  • Choi, Se-Wan;Bae, Young-Sang
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.173-179
    • /
    • 2009
  • This paper proposes a new three-phase diode rectifier system with a sinusoidal input current at unity power factor and a regulated and isolated output voltage at low level. The inherent natural wave-shaping capability of the reduced kVA polyphase transformer together with an active current wave-shaping technique results in a significant reduction of input and output filter requirements associated with switching ripple and EMI. The operation principles are described along with a design example and a comparative evaluation. Experimental results on a 1.5kW prototype are provided to validate the proposed concept.

Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger (전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치)

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

Alleviate Current Distortion of Dual-buck Inverter During Reactive Power Support (듀얼벅 인버터의 무효전력 보상 시 전류 왜곡 저감)

  • Han, Sanghun;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • This study presents a method for reducing current distortion that occurs when a dual-buck inverter generates reactive power. Dual-buck inverters, which are only capable of unity power factor operation, can generate reactive power capabilities by modifying a modulation technique. However, under non-unity power factor conditions, current distortion occurs at zero-crossing points of grid voltage and output current. This distortion is caused by parasitic capacitors, dead-time, and discontinuous conduction mode operation. This study proposes a modified modulation method to alleviate the current distortion at zero-crossing point of the grid voltage. A repetitive controller is applied to reduce this distortion of the output current. A 1 kVA prototype is built and tested. Simulation and experimental results demonstrate the effectiveness of the proposed method.

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

New Single-Stage High Power Converter Using Transformer Magnetizing Energy (변압기 자화 에너지를 이용한 새로운 단일전력단 고역률 컨버터)

  • 문건우;노정욱;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.35-38
    • /
    • 1996
  • A new high power factor converter using transformer magnetizing energy for power factor correction with a single-switch/single-stage is proposed. The proposed converter gives the good power factor correction, low current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC555-2 requirements are met satisfactorily with nearly unity power factor.

  • PDF

Bidirectional Dual Active Half-Bridge Converter Integrated High Power Factor Correction

  • Ngo, AnhTuan;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.444-446
    • /
    • 2011
  • A bidirectional dual active converter with the power factor control capability is proposed as a battery charger. The source side half-bridge acts as a PWM converter that maintains the unity power factor. The battery side half-bridge converter acts as a dual active bridge (DAB) together shares the same DC link voltage with PWM converter. The imbalance voltage phenomenon is eliminated by employing asymmetric duty cycle technique. Simulation results are included to verify theoretical analysis.

  • PDF

A Transformerless Cascade Multilevel PWM Rectifier with Unity Power Factor

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.576-580
    • /
    • 2001
  • This paper presents a casca multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules; The features and advantages of the proposed PWM rectifier can be summarized as follows; 1) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses

  • PDF

The Control of Three Phase High Power Factor PWM converter using Reduced - Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 3상 PWM 컨버터의 고역률 제어)

  • Yang, Lee-Woo;Kim, Young-Cho;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2478-2480
    • /
    • 1999
  • In this paper, the authors propose a current control system for three phase PWM AC/DC converter without the source voltage sensors. The sinusoidal input current and unity effective power factor are realised based on the estimated source voltage in the controller. The estimation of source voltage is performed based on Luenberger observer using actual currents. The estimated source voltage is used to accomplish unity power factor. The proposed method is proved by simulations.

  • PDF

Switched Mode Control Technique for the Series Resonant Sigle-Phase Rectifier with Unity Power Factor (단위 역률을 갖는 직렬공진형 단상 정류기의 모드 변환 제어기법)

  • Jung, Young-Seok;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.850-852
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. A dynamic model for this AC to DC converter is developed and an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor and the DC output voltage regulation without a current overshoot can be obtained.

  • PDF

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.