• Title/Summary/Keyword: Unit watersheds

Search Result 105, Processing Time 0.026 seconds

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Evaluation of long-term water quality management policy effect using nonparametric statistical methods

  • Jung, Kang Young;Ahn, Jung Min;Cho, Sohyun;Lee, Yeong Jae;Han, Kun Yeun;Shin, Dongseok;Kim, Kyunghyun
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.339-352
    • /
    • 2019
  • Long term water quality change was analyzed to evaluate the effect of the Total Maximum Daily Load (TMDL) policy. A trend analysis was performed for biochemical oxygen demand (BOD) and total phosphorus (TP) concentrations data monitored at the outlets of the total 41 TMDL unit watersheds of the Nakdong River in the Republic of Korea. Because water quality data do not usually follow a normal distribution, a nonparametric statistical trend analysis method was used. The monthly mean values of BOD and TP for the period between 2004 and 2015 were analyzed by the seasonal Mann-Kendall test and the locally weighted scatterplot smoother (LOWESS). The TMDL policy effect on the water quality change of each unit watershed was analyzed together with the results of the trend analysis. From the seasonal Mann-Kendall test results, it was found that for BOD, 7.8 % of the 41 points showed downward trends, 26.8 % and the rest 65.9% showed upward and no trends. For TP, 51.2% showed no trends and the rest 48.8% showed downward trends. From the LOWESS analysis results, TP began to decrease in most of the unit watersheds from mid-2010s when intensive chemical treatment processes were introduced to existing wastewater treatment plants. Overall, for BOD, relatively more points were improved in the main stream compared to the points of the tributaries although overall trends were mostly no trend or upward. For TP, about half of the points were improved and the rest showed no trends.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

A Comparative Study of Unit Hydrograph Models for Flood Runoff Estimation for the Streamflow Stations in Namgang-Dam Watershed (남강댐유역 내 주요 하천관측지점의 홍수유출량 추정을 위한 단위도 모형 비교연구)

  • Kim, Sung-Min;Kim, Sung-Jae;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.65-74
    • /
    • 2012
  • In this study, three different unit hydrograph methods (NRCS, Snyder and Clark) in the HEC-HMS were compared to find better fit with the observed data in the Namgang-Dam watershed. The Sancheong, Shinan, and Changchon in Namgang-Dam watershed were selected as the study watersheds. The input data for HEC-HMS were calculated land use, digital elevation map, stream, and watershed map provided by WAter Management Information System (WAMIS). Sixty six storms from 2004 to 2011 were selected for model calibration and validation. Three unit hydrograph methods were compared with the observed data in terms of simulated runoff volume, and peak runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the peak runoff was 0.8295~0.9999 and root mean square error (RMSE) was 0.029~0.086 mm/day for calibration stages. In the model validation, $R^2$ for the peak runoff was 0.9061~0.9916 and RMSE was 0.030~0.088 mm/day which were more accurate than calibrated data. Analysis of variance showed that there was no significant difference among the three unit hydrograph methods.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Correlation between Soil Nutrient Contents and Water Pollutant Loads in Hydrologic Unit Watersheds: Implication on the Total Maximum Daily Loads (TMDLs) (수질오염총량관리 단위유역내 토양 양분 및 수질오염 부하량 상관관계 비교)

  • Cho, Kyung-Sik;Lee, Ho-sik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.509-515
    • /
    • 2011
  • For this study the 4 sub-watersheds Okdong A, Hankang B, Jecheon A and Hankang C which are the main streams of the Han River within the mid-level region of Chungju Dam are selected and the analysis of soils has been carried out through the soil basic survey. When it comes to the soil erosion amount the soil nutrient load has been calculated by utilizing the RUSLE erosion equation. In case of the data related to the measurement of water flow and quality the information available from the "Water Information System" one of the websites run by the Ministry of Environment has been used to calculate the water pollution load. The correlation between the soil nutrient load and the water pollutant load has been analyzed through making comparison. According to the results related to the soil nutrient load of each sub-watershed the Hankang C shows the highest values TOC 29,986.92 ton/yr, TN 3,860.33 ton/yr and TP 973.97 ton/yr respectively. Even when it comes to the loads related to water quality the Hankang C shows also comparatively high values TOC 6,625.64 ton/yr, TN 7,335.01 ton/yrand TP 145.49 ton/yr respectively. The soil nutrient loads of the sub-watersheds are shown to increase towards the lower stream meaning the load increases in the order of Hankang CHankang B and Okdong A. When it comes to the water pollutant load the value goes up along down the water system meaning the load gets higher in the order of Hankang C, Hankang B and Okdong A while utilizing the mainstream within the mid-level region of Chungju Dam as the basis. The correlation study showed that the nutrient content of soil is proportional to the pollutant load in water with the strongest positive correlation with TOC.

Estimation Model for Optimum Probabilistic Rainfall Intensity on Hydrological Area - With Special Reference to Chonnam, Buk and Kyoungnam, Buk Area - (수문지역별 최적확률강우강도추정모형의 재정립 -영.호남 지역을 중심으로 -)

  • 엄병헌;박종화;한국헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.108-122
    • /
    • 1996
  • This study was to introduced estimation model for optimum probabilistic rainfall intensity on hydrological area. Originally, probabilistic rainfall intensity formula have been characterized different coefficient of formula and model following watersheds. But recently in korea rainfall intensity formula does not use unionize applyment standard between administration and district. And mingle use planning formula with not assumption model. Following the number of year hydrological duration adjust areal index. But, with adjusting formula applyment was without systematic conduct. This study perceive the point as following : 1) Use method of excess probability of Iwai to calculate survey rainfall intensity value. 2) And, use method of least squares to calculate areal coefficient for a unit of 157 rain gauge station. And, use areal coefficient was introduced new probabilistic rainfall intensity formula for each rain gauge station. 3) And, use new probabilistic rainfall intensity formula to adjust a unit of fourteen duration-a unit of fifteen year probabilistic rainfall intensity. 4) The above survey value compared with adjustment value. And use three theory of error(absolute mean error, squares mean error, relative error ratio) to choice optimum probabilistic rainfall intensity formula for a unit of 157 rain gauge station.

  • PDF

Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Nakdong River Unit Watersheds (부하지속곡선(LDC ; Load Duration Curve)을 활용한 낙동강수계 오염총량 단위유역 목표수질 평가방법 적용 방안)

  • Jung, Kang-Young;Kim, Hong Tae;Kim, Sang Soo;Kim, Shin;Shin, Dong Seok;Kim, Gyeong Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.433-445
    • /
    • 2017
  • In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.

Peak Discharge Change by Different Design Rainfall on Small Watershed (소규모유역에서 설계강우의 분포형태에 따른 첨두유량의 변화연구)

  • 김병호;장석환
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.93-97
    • /
    • 1991
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method, the synthetic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally required to know the amount and the distributions, which are the uniform distribution, the triangular distribution, the trapezoidal distribution, or the Huff type distribution, of the design rainfall. In this study, the peak discharges are calculated by the different rainfall distribution and the values are compared.

  • PDF